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fields from velocity field measurements

John O. Dabiri'*, Sanjeeb Bose?, Brad J. Gemmell®, Sean P. Colin* and John H. Costello®

ABSTRACT

We describe and characterize a method for estimating the pressure
field corresponding to velocity field measurements such as those
obtained by using particle image velocimetry. The pressure gradient
is estimated from a time series of velocity fields for unsteady
calculations or from a single velocity field for quasi-steady
calculations. The corresponding pressure field is determined based
on median polling of several integration paths through the pressure
gradient field in order to reduce the effect of measurement errors that
accumulate along individual integration paths. Integration paths are
restricted to the nodes of the measured velocity field, thereby
eliminating the need for measurement interpolation during this step
and significantly reducing the computational cost of the algorithm
relative to previous approaches. The method is validated by using
numerically simulated flow past a stationary, two-dimensional bluff
body and a computational model of a three-dimensional, self-
propelled anguilliform swimmer to study the effects of spatial and
temporal resolution, domain size, signal-to-noise ratio and out-of-
plane effects. Particle image velocimetry measurements of a freely
swimming jellyfish medusa and a freely swimming lamprey are
analyzed using the method to demonstrate the efficacy of the
approach when applied to empirical data.

KEY WORDS: Swimming, Flying, Wakes, Feeding, Particle image
velocimetry

INTRODUCTION

A long-standing challenge for empirical observations of fluid flow
is the inability to directly access the instantaneous pressure field
using techniques analogous to those established to measure the
velocity field. Recent approaches have made significant progress,
especially in the measurement of pressure associated with unsteady
fluid—structure interactions (e.g. Hong and Altman, 2008; Jardin et
al., 2009a; Jardin et al., 2009b; David et al., 2009; Rival et al., 2010;
Rival et al., 2011; David et al., 2012; Tronchin et al., 2012; van
Oudheusden, 2013; Liu and Katz, 2013). However, prior efforts
have not achieved explicit pressure estimation for moving bodies
with time-dependent shape, such as those characteristic of animal
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locomotion and feeding. The pressure field of swimming animals is
complicated by the interaction between pressure associated with
vortices in the flow and the irrotational pressure field due to
acceleration of the body, often referred to as the acceleration
reaction or added mass (Daniel, 1984).

Existing methods for empirical pressure estimation often require
relatively complex measurement techniques such as multi-camera
or time-staggered, multi-exposure particle image velocimetry (PIV)
(Jensen and Pedersen, 2004; Liu and Katz, 2006). In addition,
significant computational costs can be associated with the post-
processing required to derive the pressure field from measurements
of the velocity or acceleration fields. These post-processing
approaches generally fall into one of two categories. In the first case,
the pressure field is computed as a solution to a Poisson equation,

e.g. in an inviscid flow:
Du
Vip=—p| V- =—|, 1
r p( Dt] ()

where p is the pressure, u is the velocity vector, p is the fluid
density, and D/Dt is the material derivative, i.e. the time rate of
change of an idealized infinitesimal fluid particle in the flow.
Solution of Eqn1 poses challenges in practice because
measurement errors accumulate due to the required temporal and
spatial derivatives of u, the condition number (i.e. sensitivity) of
the Laplacian operator (Golub and Van Loan, 1996), and
measurement uncertainty in the boundary conditions, especially at
fluid—solid interfaces (Gurka et al., 2000). For attached flows at
high Reynolds numbers, the Neumann boundary condition
specifying the pressure gradient at fluid—solid interfaces is given
by the boundary layer approximation as dp/on=0, where 7 is the
direction of the local normal surface vector (Rosenhead, 1963).
However, for separated flows at moderate or low Reynolds
numbers, such as those commonly found in animal locomotion, a
priori determination of the appropriate fluid—solid boundary
conditions for solution of Eqn 1 can be intractable.

A second category of approaches for pressure field estimation is
those based on direct integration of the pressure gradient term in the
Navier—Stokes equation, e.g. for incompressible flow:

sz—p[%l:—vvzuj, )

where v is the kinematic viscosity of the fluid. The pressure
difference between two points in the domain is determined by
integration of Eqn2 between the two points. For example, the
difference in pressure between two points x,; and x; is given by:

Xz
p=pi= [ Vpdx. ©

X1
Because measurement errors accumulate along the path of
integration from x; to x; in Eqn 3, various techniques have been
employed to make this approach less sensitive to measurement
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Fig. 1. Validation of quasi-steady

e — cp0_5 pressure algorithm. (A) Pressure

field computed from numerical
simulation of flow past a two-
dimensional square cylinder at a
Reynolds number Re=UD/v=100,
where U is the freestream velocity, D
is the side length of the bluff body
and v is the kinematic viscosity of the
fluid. The pressure coefficient
¢,=pl/(pU?), where p is pressure and p
is the fluid density. (B) Pressure field
estimated using the quasi-steady
algorithm.

g
4 -3 2 10 1 2 3 4 -4 -3 -2

uncertainty. A common strategy is to take advantage of the scalar
property of the pressure field, such that its local value is independent
of integration path. Therefore, each independent integration path that
arrives at a point in the flow is in principle an independent estimate
of the pressure at that point, provided that measurement errors are
uncorrelated. By polling a large number of integration paths, an
estimate of the local pressure can be achieved. For example, one
successful method (Liu and Katz, 2006) uses an iterative scheme
that averages 2m(n+m)+2n(2m+n) integration paths on an m>n grid
in order to estimate the instantaneous pressure field.

The aforementioned iterative scheme, while effective in limiting
the influence of measurement errors, still incurs a relatively high
computational cost. For example, for a 128x128 grid of velocity
vectors that is commonly acquired using PIV, the method requires
1.6x10° integration paths per iteration of velocity field integration;
and several iterations can be required for convergence of the method
(Liu and Katz, 2006). Furthermore, if each integration path is taken
as a straight line through the domain, then the method requires
interpolation of the estimated pressure gradient field in order to
evaluate integration path points that do not coincide with the original
data grid. While these requirements are not necessarily prohibitive
for two-dimensional calculations, they are time consuming and are
indeed a showstopper for extension of the method to three
dimensions.

We present a simple yet demonstrably effective approach for
pressure estimation that is in the spirit of the second category of
pressure estimation methods. The method is validated by using two
numerically simulated flows: flow past a two-dimensional,
stationary bluff body and the flow created by a three-dimensional,
self-propelled anguilliform swimmer. The first flow is used to
characterize a quasi-steady implementation of the algorithm, in
which the pressure field is estimated from a single velocity field
measurement. The second flow demonstrates the ability of the
method to accurately estimate the pressure on unsteady, deformable
bodies such as those of relevance in animal locomotion. Both flows
are used to characterize the method, including its numerical
convergence properties and sensitivity to domain size, signal-to-
noise ratio and out-of-plane effects. Furthermore, we apply the
method to PIV measurements of a freely swimming jellyfish medusa
and a freely swimming lamprey, and show that this tool can be
applied to the type of measurement data commonly acquired in
research.

The reader is strongly encouraged to proceed to the Materials and
methods section of the paper before continuing to the Results and
Discussion.
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RESULTS AND DISCUSSION

Quasi-steady pressure estimation

Fig. 1 compares an instantaneous pressure field from the numerical
simulation of flow past a stationary bluff body with the pressure
field estimated from the corresponding velocity field using the
quasi-steady form of the present algorithm. A vector field spatial
resolution of D/16 (where D is the side length of the bluff body) is
used in the horizontal and vertical directions to mimic typical PIV
measurements. The salient features of the flow, especially the high
pressure on the upstream face of the bluff body and the low pressure
in the shear layers and near-wake vortices, are well captured by the
algorithm (see supplementary material Appendix S1 for discussion
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Fig. 2. Validation of fully unsteady pressure algorithm. (A) Pressure field
computed from numerical simulation of a three-dimensional self-propelled
swimmer. The pressure coefficient ¢,=p/(pU?). Velocity nodes completely
inside the swimmer body are indicated in black (the body surface is smooth
in the numerical simulation). Spatial coordinates are normalized by swimmer
length. (B) Pressure field estimated using the unsteady algorithm.

(C) Pressure field estimated using the quasi-steady algorithm.
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of discrepancies in the far wake). Furthermore, the maximum and
minimum pressures in the field are in quantitative agreement (see
supplementary material Fig.S1). To be sure, nearest-neighbor
Gaussian smoothing creates a spurious thin layer of undefined
pressure at the fluid—solid interface and moves the pressure peak on
the upstream face of the body away from the interface. However, the
correct near-body pressure can be recovered by increasing the grid
resolution so that the nearest-neighbor filter artifact on the body
surface is limited to a smaller region very close to the body.
Additional surface pressure calculations for the quasi-steady case
(see supplementary material Appendix S1) are based on a velocity
vector spacing of D/64. Note that a similar increase in resolution
using a PIV camera would require a concomitant reduction in the
measurement window size due to limits on camera pixel resolution.

Additional characterization of the quasi-steady algorithm is
detailed in supplementary material Appendix S1, including: analysis
of spatial convergence; the relative contribution of each integration
path to the median pressure field; robustness to measurement noise;
and the effects of domain size, fluid viscosity and fluid—solid
interfaces.

Unsteady pressure estimation

Fig. 2 compares an instantaneous pressure field from the numerical
simulation of a self-propelled anguilliform swimmer with the
pressure field estimated from the corresponding velocity field using
the unsteady form of the present algorithm. A vector field spatial
resolution of L/42 (where L is the length of the swimmer) is used in
the horizontal and vertical directions. No smoothing is applied to
this data set in order to contrast the results with those in the previous

section and to limit the spatial extent of the region of undefined
pressure near the fluid—solid interface. The algorithm is effective in
capturing: the high—low pressure couples formed on the sides of the
swimmer head and tail as they accelerate in the positive-y direction;
the low-high pressure couple formed at the mid-body as it
accelerates in the negative-y direction; and the pressure in the wake
vortices.

The importance of the unsteady term in Eqn 9 (see Materials and
methods) is illustrated by comparison with the pressure field
estimated using the quasi-steady approximation, shown in Fig. 2C.
Low pressure in the wake vortices is captured, but the high—low
pressure couples on the body surface due to the body added mass
are missing entirely, as is the high pressure in the wake due to vortex
added mass (Dabiri, 2006). The comparison is further quantified in
Fig. 3, which plots the pressure on a contour surrounding the
swimmer and immediately adjacent to the region of undefined
pressure. At each of the four phases of the swimming cycle shown,
good agreement is achieved between the pressure computed in the
numerical simulation and the pressure estimated from the velocity
field using the unsteady algorithm. By contrast, the pressure
estimated by the quasi-steady algorithm is erroneous everywhere
except near the forming wake vortex at the tail.

Additional characterization of the unsteady algorithm is provided
in supplementary material Appendix S2, including analysis of
temporal convergence and out-of-plane effects for three-dimensional
flows.

To demonstrate the efficacy of the present method for analyzing
empirically measured velocity fields, Fig.4 shows measured
velocity and vorticity fields for the freely swimming jellyfish and

0.05; 0.05

Fig. 3. Pressure on the contour
surrounding the self-propelled
swimmer and immediately adjacent
to the region of undefined pressure,
at four instants during the swimming
cycle duration T. The head is at body
node number 45; the tail is at body
nodes 1 and 90. Solid curve, pressure
computed from the numerical
simulation. Filled circles, pressure
estimated from the unsteady algorithm.
Open circles, pressure estimated from
e | the quasi-steady algorithm. (A) #/T=1/4;
= (B) t/T=1/2; (C) t/T=3/4; (D) ! T=1, where
1 tis instantaneous time.
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lamprey (Fig. 4A,C) along with the corresponding pressure fields
estimated using the unsteady algorithm (Fig.4B,D). The full
measurement domain is shown in both cases; the velocity vector
field is plotted at half of the full resolution. Only the left half of the
jellyfish body is visible in the measurement domain; its exumbrellar
surface is indicated by a black curve in Fig. 4A,B. The full lamprey
body is visible in Fig. 4C,D.

In both cases, the pressure field derived from the velocity field
measurements captures key features near the body surface and in the
wake. In particular, the jellyfish data set indicates low pressure in
the forming starting vortex and high pressure where the bell margin
is accelerating inward and pushing the adjacent fluid. The results are
consistent with the measured vorticity field (Fig.4C), with the
region of low pressure corresponding to the core of the starting
vortex. The presence of low and high pressure regions near the bell
margin is also in agreement with previous numerical simulations of
a swimming jellyfish with similar body shape and kinematics (Sahin
et al., 2009).

The lamprey data set shares similarities with the three-
dimensional numerical model shown previously. The vorticity and
pressure fields are less smooth and show finer structure in the
empirical measurements, which is attributable in part to the
Reynolds number being approximately four times higher than that
of the numerical simulation.

The ease of implementation of this algorithm, in terms of both
data acquisition and velocity field post-processing, and its relatively
low computation cost (see supplementary material Appendix S2)
gives it the potential to find use in a broad range of problems of
interest in biological fluid mechanics. Because the temporal filter
implemented in the unsteady algorithm does add considerable time
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Fig. 4. Application of unsteady
pressure algorithm to empirical
measurements. (A) Particle image
velocimetry (PIV) measurement of a
freely swimming jellyfish medusa.
The velocity field is plotted on vorticity
contours. Maximum velocity vector is
~3cms™'. The velocity field is plotted
at half of full resolution. The left half
of the exumbrellar surface is
indicated by the black curve.

(B) Pressure field estimated using the
unsteady algorithm. (C) PIV
measurement of a freely swimming
lamprey. The velocity field is plotted
on vorticity contours. Maximum
velocity vector is ~11 cms™. The
velocity field is plotted at half of full
resolution. The animal body is
approximately indicated in black.

(D) Pressure field estimated using the
unsteady algorithm.

X (cm)

to the pressure calculation (cf. supplementary material Fig. S10), in
practice one should first evaluate the results of both the quasi-steady
and the fully unsteady implementations of the algorithm on a sample
of the data of interest to determine whether unsteady effects are
important. If they are not, then the quasi-steady calculation provides
the most efficient tool for determination of the pressure field.

Although the present evaluation focused on two-dimensional
velocity fields, it is straightforward to extend the algorithm to three
dimensions by the addition of a limited number of new integration
paths consistent with the geometry in Fig. 5. In that case, even
greater reductions in computation expense can be achieved relative
to existing methods as a result of the relatively small total number
of required integration paths and the elimination of associated
velocity field interpolation during integration of the pressure
gradients.

A free MATLAB implementation of this algorithm is available at:
http://dabiri.caltech.edu/software.html.

MATERIALS AND METHODS

Material acceleration estimation

The instantaneous fluid particle acceleration Du/Df required for calculation of
the pressure gradient in Eqn 2 is estimated by advecting idealized infinitesimal
fluid particles in the measured velocity fields. For quasi-steady estimation, the
material acceleration is derived from a single velocity field as:

Du upry (X? ) —upry (Xi)
L va— @
where i=1, 2... mxn (i.e. the dimensions of the velocity grid), x; are the
positions of fluid particles coincident with the grid points in the PIV velocity
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Fig. 5. Geometry of integration paths for pressure field estimation. Eight
paths originate from the domain boundary and propagate toward each point
(xi,y;) in the domain from the left (L), upper left (UL), top (T), upper right (UR),
right (R), lower right (LR), bottom (B) and lower left (LL). The points on each
path coincide with the measurement grid.

field, and x? are the positions of those fluid particles after being advected by
the instantaneous velocity field for a period Af:

x¢ = X; +upry (x;)Ar. )

In order for Eqns 4 and 5 to remain valid, Af is limited to values much
smaller than the characteristic time scale of the flow, yet sufficiently large
that there is a measurable change in the fluid particle velocity.

For many flows, especially those involving accelerating or deforming
bodies, the aforementioned constraint on At cannot be satisfied. For these
inherently unsteady fluid—structure interactions, we derive the material
acceleration from two sequential velocity fields as:

Du B UPIV(X?,tz)—uPIV(Xi,ll)
E(Xi,tl)N h—1 ’ (6)
where
x?zx[+[UPIV(Xi’t]);uplv(xi’tz)J(tz_tl)_ @)

Eqn 7 is akin to a Crank—Nicolson (i.e. trapezoidal) scheme for the particle
positions, in contrast to the forward Euler scheme in Eqn 5. Hence, the
convergence of the method with time step is second order (Crank and
Nicolson, 1947).

The primary source of measurement error in this type of unsteady estimate
of the material acceleration Du/D¢ arises from temporal noise in the
measured velocity components at each node in the velocity field. We address
this by applying a temporal filter to the time series of velocity fields, which
results in a smoothing spline approximation u* to the velocity u at each
node in the velocity field. The spline approximations are defined such that
they minimize, for each component of u, the parameter:

N 2 fmax )
S“:q)Z(uT—u;k) +(1-0) | ‘%
=1 .

fmin

dt, ®)

where =1...N is the temporal sequence of velocity fields to be analyzed,
u, is a velocity vector corresponding to velocity field ¢ in the sequence, u¥
is the spline-approximated value of the same velocity vector for the same
velocity field in the sequence, #,;, and 7, are the temporal bounds on the

sequence of velocity fields, and ¢ is a weight between the first and second
terms and has a value between 0 and 1. In effect, the parameter S,
quantifies both the deviation of the spline approximation from the original
data (i.e. the first term) and the total curvature magnitude of the spline
approximation (i.e. the second term). For ¢=0, only the second term is
minimized, resulting in a least-squares fit with zero curvature, i.e. a linear
fit to the data. For ¢=1, only the first term is minimized, giving a cubic
spline fit that passes through each original data point. In all that follows,
we set $=0.05, a value we have identified as enabling effective temporal
noise filtering without discarding true temporal trends in the measurement
data.

Further characterization of the temporal filter is provided in
supplementary material Appendix S2. In particular, it is shown that the use
of the temporal filter increases the order of temporal convergence above
second order, as anticipated by theory (Atkinson, 1968).

It is worth noting that the distinction between the quasi-steady and
unsteady approaches can be made explicit by decomposing the material
acceleration into its Eulerian components:

Du _du

D= o +(u V)u. )
The quasi-steady approximation in Eqns 4 and 5 implicitly neglects the first
term on the right-hand side of Eqn 9, whereas the unsteady calculation
retains it.

The viscous term on the right-hand side of Eqn2 is computed using
centered finite differences between adjacent nodes in the velocity field. The
effect of the viscous term is evaluated in the context of a numerical
simulation described in the validation section.

Pressure gradient integration

Whereas previous methods that integrate the pressure gradient via many
integration paths assign to each grid point the arithmetic mean of the many
integrations, in the present approach the paths are polled by taking the
median. The median is less sensitive to grossly erroneous values that may
arise on a few of the integration paths due to localized measurement errors
or to localized errors created by the aforementioned material acceleration
approximations in Eqns 4—7. Hence, this approach enables a significant
reduction in the total number of integration paths per frame that are required
to achieve accurate pressure estimates. Fig. 5 illustrates the paths used
presently. Eight families of integration paths are used, with each family
originating at the domain boundary and propagating toward each grid point
from the left (L), upper left (UL), top (T), upper right (UR), right (R), lower
right (LR), bottom (B) and lower left (LL), respectively.

Only eight integration paths (one per family) per grid point are used, for
a total of 8mxn paths per velocity field. For the aforementioned example
grid of 128x128 velocity vectors, 1.3x10° integration paths are required, a
20% reduction from existing optimal methods (Liu and Katz, 2006). More
importantly, the integration paths are constrained to include only grid points
coincident with the original velocity field. For example, the UL integration
path is composed of alternating integration steps in the —y and +x directions,
originating at the domain boundary and terminating at each grid point.
Hence, no interpolation is required in order to integrate the pressure gradient
field. Furthermore, portions of many of the paths are redundant, facilitating
fast calculation using simple matrix manipulations. A forward Euler spatial
integration scheme is used throughout, resulting in first-order spatial
convergence of the method (see supplementary material Appendix S1).

An important limitation of the present algorithm that arises from the trade-
off between speed and accuracy is that it assumes the pressure is zero at the
point on the outer domain boundary where each integration path is initiated.
This does not imply, however, that the final pressure estimate is constrained
to be zero at the boundaries. Integration paths that originate from the other
domain boundaries and terminate at a given boundary may estimate a non-
zero value of pressure at the termination point. If the median of all paths
terminating at that point on the domain boundary is non-zero, then the final
pressure estimate at that point will also be non-zero. Note that for all points
in the domain, the final pressure estimate is relative to a zero reference
pressure, as that is the pressure at the origin of each integration path. The
impact of these assumptions on the robustness of the technique is quantified
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in supplementary material Appendix S1, and it is shown to be modest for
the external flows tested. At the same time, the net result of this trade-off in
the algorithm design is a more than order-of-magnitude reduction in
computational time compared with previous methods (see supplementary
material Appendix S2).

A common source of localized error that can affect pressure estimates is
the presence of solid objects in the flow. Typical PIV measurements are
often unreliable in the region close to solid objects, which compromises
pressure integration paths that cross the fluid—solid interface, especially in
previous methods that average the erroneous data instead of discarding it via
median polling (or in Poisson solvers that rely on the pressure gradient at
the fluid—solid interface as a boundary condition). In the present algorithm,
integration paths that cross a fluid—solid interface in the flow can be nullified
by assigning the nodes nearest to the interface an undefined pressure
gradient. Hence, when that value is integrated along any integration path,
the pressure value for that path also becomes undefined and therefore does
not contribute to the median calculation.

Validation data sets

To validate the accuracy of the quasi-steady pressure estimates achieved
using this algorithm, a numerical simulation of flow past a two-
dimensional square cross-section cylinder at a Reynolds number of 100
was used. This numerical data set enabled quantification of the effects of
spatial resolution, domain size and signal-to-noise ratio, while providing
a known pressure field standard for comparison (see supplementary
material Appendix S1). The numerical simulation was executed using a
solver that computes on arbitrary polyhedra (Ham and Iaccarino, 2004).
In the present case, a regular Cartesian mesh was utilized and subsequently
interpolated onto coarser grids of varying sizes typical of PIV data. The
viscous term in Eqn 2 was retained in all of the calculations to demonstrate
the robustness of the median polling approach to errors normally
associated with application of the Laplacian operator. For all calculations
of Eqns 4 and 5 in this validation, we set Ar=0.014/Uy.x, Where £ is the
mean grid spacing and U, is the maximum flow speed in the
measurement domain. The results described below were insensitive to
order-of-magnitude larger and smaller values of Az. Where noted, nearest-
neighbor Gaussian smoothing was applied both to the pressure gradient
before integration and to the resulting pressure field.

The accuracy of the fully unsteady pressure estimates was validated by
using a published numerical simulation of a three-dimensional, self-
propelled anguilliform swimmer (Kern and Koumoutsakos, 2006). The
Reynolds number based on swimmer length and speed was ~2400. Time
steps between sequential velocity fields from 0.027 to 0.087 (where T is the
swimming stroke duration) were studied to quantify the temporal
convergence of the method. The validation results described in the Results
section are based on calculations of Eqns 6 and 7 using velocity fields
separated by 0.027.

Empirical data sets

The present method was also applied to PIV measurements of a freely
swimming Aurelia aurita Linnaeus 1758 jellyfish medusa and a freely
swimming Anguilla rostrata Lesueur 1817 lamprey to demonstrate the
performance of the algorithm with empirical data inputs and, in the case of
the jellyfish, without treatment of fluid—solid interfaces. The swimming
Reynolds numbers of the jellyfish and lamprey were ~1000 and 10,000,
respectively, and the time between sequential velocity fields was 5 ms
(¢/T=0.013) and 4ms (#/7=0.015), respectively. Details of the PIV
implementation can be found in published literature (Colin et al., 2012).
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APPENDIX 1: ADDITIONAL CHARACTERIZATION OF QUASI-STEADY ALGORITHM
Effect of median polling

To illustrate the contribution of each integration path to the final pressure estimate, Fig. S1 plots the pressure on the body surface (at 0.1D
away from the fluid—solid interface, to avoid the spatial filter artifact) and on two additional concentric square contours in the domain (e.g.
the dashed contour in Fig. S2A), as computed using each of the eight families of integration paths. The results illustrate the benefit of
median polling versus an average of the integration path results. For example, only five of the integration path families intersect the
upstream face of the bluff body without passing through the body itself. The median of these curves is in good quantitative agreement with
the correct surface pressure (Fig. S1A). The pressure profiles for the two concentric square contours in the domain (i.e. Fig. S1B, Fig. S1C)
indicate that the contribution of each family to the final pressure estimate is spatially non-uniform. This is illustrated qualitatively in Fig.
S1D, which is a contour plot that colors each point in the domain according to the path family that corresponds to the median pressure at
that point. Because there are eight path families, the median is always the average of the two intermediate values (where none of the paths
is undefined due to intersection with the solid body). To reveal the individual integration path family contributions, a ninth pressure value
equal to the mean of the eight path families is included in Fig. S1D, so that the median pressure is from either a single integration path
family or the mean. The contour plot indicates that each integration path family contributes to the final pressure field estimate, but the
contributions are often spatially localized. The pressure estimates for the R family of integration paths are noticeably less accurate than the
other families (e.g. Fig. S1A) and yet, as illustrated in Fig. S1D, these paths determine the pressure estimate in the far wake. This leads to
the observed poorer pressure estimate in that region of the flow (e.g. Fig. 1B). The underlying source of this effect is discussed below in the
section examining the effect of boundary conditions.

Effect of global measurement error

Perhaps the most important test of the algorithm is its robustness to global measurement errors, such as those associated with empirical
measurements. Fig. S2 illustrates the streamwise velocity contours for data sets with increasing levels of Gaussian white noise
superimposed on the u and v velocity components. The highest levels of noise, corresponding to the lowest signal-to-noise ratios, are higher
than typical PIV data but possibly representative of instantaneous two-dimensional data collected in a highly turbulent flow field, where
out-of-plane motion can reduce data quality. Comparison of the pressure profiles on a square contour centered on the bluff body and with
side length 3D so that it passes through the salient flow features (i.e. Fig. S2A) indicates that, with the exception of the highest noise level
tested, the quantitative pressure estimates remain consistent with the noise-free result despite relatively high noise (Fig. S3A). Error in the
pressure estimate is not additive with the increasing noise level because errors do not accumulate uniformly on the eight paths that arrive at
each point in the domain. Hence, median polling remains an effective filter irrespective of the noise magnitude, up to the second-highest
noise level tested. At higher noise levels, contour plots of the pressure estimate begin to exhibit spatial discontinuities reminiscent of the
median contributions in Fig. S1D. Because the pressure estimates from each integration path family begin to diverge in the presence of
high noise levels, median polling in this case leads to spatially discontinuous changes in pressure. Results of this sort are an indication that
measurement noise in the input velocity data has become unacceptably large.

Effect of boundary conditions

As mentioned previously, a major assumption implicit in the present algorithm is that the pressure on each integration path is zero at its
originating point on the boundary, to avoid the need for a computationally expensive iteration scheme to solve for the boundary pressure as
part of the field solution (Liu and Katz, 2006). Although this assumption can be reasonable for large domains, it is prudent to investigate
the dependence of the pressure estimate on the domain size. Fig. S3B plots the pressure on a square contour centered on the bluff body (see
Fig. S2A) for domains ranging in size from H/D=2 to 30, where H is the half-width of the domain. The results indicate that the accuracy of
the algorithm (and, hence, the assumption regarding the boundary pressure) is not significantly compromised until the domain shrinks to

H/D=2. This limitation is important to keep in mind when designing experiments that will make use of the present algorithm.

Notwithstanding the demonstrated efficacy of the aforementioned assumption regarding the boundary pressure, examination of the
individual pressure estimates on each family of integration paths reveals that some individual estimates are severely compromised by this
assumption. Most notably, the R family of integration paths originate at the downstream boundary of the domain, where vortices shed by
the bluff body exit the measurement window and create a non-zero pressure on that boundary. Hence, this family of pressure estimates is
significantly less accurate than the others, as seen in Fig. S1A, for example. The benefit of the median polling approach is that this estimate

is usually discarded in determining the final pressure estimate. In contrast, previous methods would include pressure estimates affected by



the downstream boundary in the final averaged pressure estimate, and therefore require additional computational effort to resolve the
correct pressure on that boundary via iterative processes. However, the present method does suffer in that the pressure in regions close to
the downstream boundary is based either on integration paths that originate at the downstream boundary where the pressure is non-zero (i.e.
R, UR and LR families) or on long integration paths from the other boundaries. The relatively large error accumulated on the long
integration paths can make them an even poorer estimate of the local pressure near the R boundary (cf. Fig. S1D); hence, the median
pressure in this region is less accurate than in the rest of the domain. This limitation is inherent in the present method and should be kept in
mind when using the technique for flows with large velocity gradients at any of the boundaries.

Effect of fluid viscosity

It is useful to examine the role of the viscous term in Eqn 2, as many previous pressure estimation methods neglect this term. Fig. S4A
plots the pressure estimates on the body surface for each integration path family as in Fig. S1A, but for a pressure estimate that neglects the
viscous term in the Navier—Stokes equation. The effect is most noticeable in integration paths orthogonal to the mean flow (i.e. T and B),
especially near the upstream face of the bluff body. This result can be understood by considering the contributions to the pressure gradient
from the streamwise and transverse material acceleration components, Du/D¢ and Dv/Dt, relative to the contributions from the Laplacian of
the streamwise and transverse velocity components in the viscous term. As the flow approaches the upstream face of the bluff body, the
material acceleration is dominated by streamwise fluid particle deceleration Du/D¢. However, the pressure computed on integration paths
that are orthogonal to the mean flow (i.e. T and B) is independent of this term. Instead, on these paths the pressure depends to a significant
degree on the local velocity curvature (i.e. second spatial derivative) as the flow is turned around the bluff body. This effect is captured in
part by the Laplacian of the transverse velocity. Hence, its neglect leads to an underestimate of the pressure on those integration paths. The
net effect of the neglected viscous term is minimal due to the median polling approach implemented presently, i.e. the T and B paths do not
represent the median pressure estimate on the upstream face of the bluff body and are therefore not a factor in the final pressure estimate in
that region of the flow.

Effect of fluid-solid interfaces

An aspect of the present algorithm that can be cumbersome is the treatment of the fluid—solid interface to eliminate the effect of integration
paths that pass through solid objects in the flow. For example, for moving objects, this approach requires the identification of the fluid—
solid interface in each data frame. To illustrate the effect of the interface treatment in the algorithm, Fig. S4B plots pressure estimates on
the body surface, where the algorithm has been implemented without treating the fluid—solid interface. The accuracy of the algorithm is
noticeably affected due to additional spurious pressure estimates on paths that cross the body. However, it is noteworthy that the final
pressure estimate is still qualitatively consistent with the correct pressure field. It may therefore be acceptable to bypass the fluid—solid
interface treatment where only a quantitative approximation of the pressure field is sought. The results of the analysis in Fig. 4B, which did
not identify the boundary of the medusa as was done for the numerical data, suggest that suitable pressure estimates can still be achieved
where treatment of the fluid—solid interfaces is not practical.

Spatial convergence

The spatial convergence of the quasi-steady algorithm was evaluated by computing the pressure on a square contour immediately adjacent
to the region of undefined pressure on the bluff blody, and by integrating the pressure to compute the net force in the streamwise and lateral
directions. Fig. S5 plots the fractional error in these calculations [using the pressure from the numerical simulation (CFD) as the true value,
i.e. |[Ferp—Fesimatel/Forp] versus the grid resolution. At relatively large grid spacing, the log—log curve has a slope of 1, indicating the
expected first-order spatial convergence of the method. As the grid spacing is further reduced, the error decreases more slowly. This effect
is due to a combination of inherent model error and numerical round-off error. A convergence plot for calculations of the time-averaged
streamwise force is included. Its departure from first order convergence at small grid spacing confirms that the quasi-steady approximation
is not solely responsible for errors at small grid spacing. For grid spacing less than D/16, the error falls below 5% for the instantaneous

pressure and approaches 10% for the time-averaged pressure.

APPENDIX 2: ADDITIONAL CHARACTERIZATION OF UNSTEADY ALGORITHM
Effect of temporal filter

Fig. S6 plots the time series of v component data at two selected points in the jellyfish PIV data set. Despite the relatively smooth spatial
distribution of velocity as illustrated in Fig. 4A and Fig. S7A, there is non-trivial scatter in the temporal data at both spatial locations. Flow

accelerations computed by using finite differences of adjacent velocity fields would be subject to large errors because the local slope varies



considerably between adjacent pairs of velocity fields. A temporal filter of the data is therefore essential in this case. Fig. S6 indicates

the corresponding smoothing splines that were fitted to the data and subsequently used to compute the material acceleration. The splines
capture the true transient behavior of the flow while eliminating the high-frequency noise. Comparison of Fig. S7A and Fig. S7B illustrates
that the spatial distribution of velocity is relatively unaffected by the temporal filter. It is prudent to note that if a flow exhibits real, high-
frequency oscillations in the velocity, e.g. in turbulence, it will be essential that the PIV measurements are of sufficiently high temporal
resolution such that the smoothing spline does not discard those temporal trends. In those cases, it is important that the frequency of PIV
measurements satisfies the Nyquist sampling criterion with respect to the time scale of turbulence fluctuations, while concurrently avoiding
sampling at frequencies high enough to incur numerical round-off errors in the calculation (Beckwith et al., 2007).

Effect of out-of-plane flow

Given that two-dimensional PIV data represent a projection of three-dimensional flow, it is useful to characterize the impact of that
limitation on the accuracy of the present methods. As in prior work (Stamhuis and Videler, 1995), Fig. S8 characterizes the out-of-plane
motion by computing the divergence of a two-dimensional velocity field extracted from the three-dimensional numerical simulation of the
self-propelled swimmer and of the PIV data sets examined in Fig. 4. The divergence is made dimensionless by multiplying it by the time
step between adjacent velocity fields, as this time scale is most relevant for calculation of the material acceleration. The plots effectively
quantify the fractional change in the volume of an idealized infinitesimal fluid particle between adjacent velocity fields. Because the flows
are incompressible, the fractional volume change would be identically zero if the flows were two-dimensional. Deviation from zero values

can therefore be attributed to velocity gradients perpendicular to the plane of the velocity field, i.e. out-of-plane flow.

The results in Fig. S8 indicate that the three-dimensional numerical simulation exhibits greater out-of-plane flow than the PIV
measurements. Given the demonstrated accuracy of the algorithm in the case of the three-dimensional numerical data, we can conclude that
the algorithm is robust to out-of-plane effects at the magnitudes found in typical PIV measurements. To be sure, the divergence metric does
not capture out-of-plane flow where there is no flow gradient in the perpendicular direction. However, in such cases, the PIV would itself
be difficult to acquire, as the seed particles would not remain in the plane of the laser sheet sufficiently long to enable temporal cross-
correlation of their positions.

Temporal convergence

The temporal convergence of the unsteady algorithm was evaluated by plotting the fractional error in the pressure at the head of the self-
propelled swimmer at an instant of high acceleration [using the pressure from the numerical simulation (CFD) as the true value, i.e. |pcpp—
Pestimate)/Pcrp] Versus the time step between velocity fields (Fig. S9). Although the available data were limited to time steps from 0.027 to
0.087, the results are consistent with temporal convergence that is higher than second order, except as the smallest step size is approached,
where further reduction in error is limited by inherent model error and numerical round-off error. At a temporal spacing of 0.027, the error

in the pressure at the head is ~8%.

When the unsteady algorithm is applied to a sequence of velocity fields that are spaced too closely in time, leading to increased
numerical error, the results appear similar to those described in the context of global measurement error (Appendix S1) in which the

pressure contours exhibit spatial discontinuity reminiscent of Fig. S1D.

Computational cost

Fig. S10 plots the time required for a single 3 GHz processor to apply the temporal filter and to compute the pressure field for velocity
fields from 32x32 to 256x256 nodes, which is a practical upper limit for typical PIV measurements due to camera pixel resolution. The
time required for the temporal filter scales linearly with the number of nodes in the velocity field. The cost is independent of the number of
velocity fields in the sequence of up to the tested several hundred frames of data. The computational cost of the subsequent pressure
calculation scales sublinearly in the range tested, and it is significantly lower than the cost of the temporal filter in absolute terms. For
example, for a 128x128 velocity field, each pressure field is computed in ~3 s, as compared with 46 s using an existing iterative algorithm
(Liu and Katz, 2006).

Fig. S1. (A) Pressure on surface of bluff body estimated using quasi-steady algorithm. Measurement contour is offset by 0.1D from
the fluid—solid interface. The pressure coefficient cp=p/(pU2). s is the local surface coordinate and increases in the counter-clockwise
direction from the upper right corner of the bluff body. Dashed black line, pressure from numerical simulation; solid black line,
pressure estimated using quasi-steady algorithm; solid colored lines, pressure estimates based on each family of integration paths.
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Colors correspond to paths in Fig. 5 and to the legend in D. (B,C) Pressure on square contours centered on the bluff body and with
side length 2D and 3D, respectively (e.g. Fig. S2A). s is the local surface coordinate and increases in the counter-clockwise direction
from the upper right corner of each square contour. The difference in abscissa in panels A—C reflects the different contour perimeters.
(D) Contour plot that colors each point in the domain according to the path family that corresponds to the median pressure at that
point. To reveal the individual integration path family contributions, a ninth pressure value equal to the mean of the eight path families
is included, so that the median pressure is from either a single integration path family or from the mean.

Fig. S2. Streamwise velocity contours for flow field with Gaussian white noise added to reduce the signal-to-noise ratio (SNR). (A)
SNR=32 dB. (B) SNR=24 dB. (C) SNR=20 dB. (D) SNR=16 dB. Dashed square in A indicates contour on which quasi-steady
pressure estimates are compared in Fig. S3A.

Fig. S3. (A) Quasi-steady pressure estimate on contour shown in Fig. S2A for varying signal-to-noise ratio. s is the local surface
coordinate and increases in the counter-clockwise direction from the upper right corner of the square contour. (B) Quasi-steady

pressure estimate on contour shown in Fig. S2A for varying measurement domain size. H is the half-width of the measurement

domain.

Fig. S4. (A) Pressure on surface of bluff body estimated using quasi-steady algorithm without viscous term. Measurement contour is
offset by 0.1D from the fluid—solid interface. s is the local surface coordinate and increases in the counter-clockwise direction from the
upper right corner of the bluff body. Dashed black line, pressure from numerical simulation; solid black line, pressure estimated using
quasi-steady algorithm; solid colored lines, pressure estimates based on each family of integration paths. (B) Pressure on surface of
bluff body estimated using quasi-steady algorithm without treatment of fluid—solid interfaces to remove integration paths that pass
through the solid body.

Fig. S5. Spatial convergence of the algorithm. Log—log plot of the fractional error in instantaneous streamwise (closed circles),
instantaneous lateral (open circles), and time-averaged streamwise (closed squares) force coefficients versus grid resolution for
numerical simulation of two-dimensional flow past the bluff body. Solid line indicates a slope of 1 corresponding to first-order
convergence. Deviation from first-order convergence at small grid resolution is due to a combination of model error and numerical
round-off error.

Fig. S6. Time series of v component data at two selected points in the jellyfish PIV data set. Symbols indicate original PIV data at
corresponding locations identified in Fig. S7. Solid curves indicate respective smoothing splines.

Fig. S7. (A) Contour plot of v component of original velocity measurement during middle of jellyfish bell contraction. (B) Contour plot
of v component temporal spline-filtered velocity measurement during middle of jellyfish bell contraction. Location of animal is similar
to that indicated in Fig. 4A, although earlier in the bell contraction phase. Closed circle near bell margin and open circle in wake
indicate locations of temporal profiles in Fig. S6.

Fig. $8. Contour plots of normalized two-dimensional divergence for (A) three-dimensional numerical simulation of self-propelled
swimmer, (B) PIV measurement of freely swimming jellyfish (cf. Fig. 4A), (C) PIV measurement of freely-swimming lamprey (cf. Fig.
4C). Dimensional divergence is normalized by multiplying by the time step between sequential velocity fields in each case.

Fig. $9. Temporal convergence of the algorithm. Log—log plot of the fractional error in pressure at the head of the simulated three-
dimensional self-propelled swimmer versus time step between velocity fields (closed circles). Solid line indicates a slope of two
corresponding to second-order convergence.

Fig. S10. Computational cost of the algorithm, as quantified by the time required for a single 3 GHz processor to apply the temporal
filter (open circles) and to compute the pressure field (closed circles) for velocity fields from 32x32 to 256x256 nodes. Solid line
indicates slope of 1.
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