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Abstract: Turbulent wakes trailing utility-scale wind turbines reduce the power production and
efficiency of downstream turbines. Thorough understanding and modeling of these wakes is
required to optimally design wind farms as well as control and predict their power production.
While low-order, physics-based wake models are useful for qualitative physical understanding,
they generally are unable to accurately predict the power production of utility-scale wind farms
due to a large number of simplifying assumptions and neglected physics. In this study, we propose
a suite of physics-informed statistical models to accurately predict the power production of arbitrary
wind farm layouts. These models are trained and tested using five years of historical one-minute
averaged operational data from the Summerview wind farm in Alberta, Canada. The trained models
reduce the prediction error compared both to a physics-based wake model and a standard two-layer
neural network. The trained parameters of the statistical models are visualized and interpreted in the
context of the flow physics of turbulent wind turbine wakes.
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1. Introduction

To prevent global averaged temperatures from rising 1.5 ◦C above pre-industrial levels, renewable
energy must increase from 20% to 67% of global energy production from 2018 to 2040 [1]. To meet
this goal, wind farms are increasing in size and energy production penetration. With increasing
wind turbine and wind farm size, the costs of high voltage transmission lines and land usage
increase significantly [2]. As such, wind farms are typically constructed with a streamwise spacing
of 6–10 turbine diameters in the prevailing wind direction [3]. With these average distances between
turbines, downstream turbines produce significantly less power than freestream turbines as a result of
aerodynamic wake effects when wind speeds are below the rated value [4]. Due to the loss in wind
farm efficiency as a result of wind turbine wakes, numerous works have attempted to understand the
governing physics of this phenomena in an effort to model the power production of wind farms [5].
The complex interactions between wind farms and the atmospheric boundary layer have been well
studied, as recently reviewed by Stevens and Meneveau [6].

Physical observations and simulations have led to a number of wind turbine wake models which
aim to accurately capture the aerodynamics of a single wind turbine wake. Such wake models show good
agreement for single turbines with wind tunnel experiments [7], numerical simulations [8], and field
experiments [9]. However, the aerodynamic interactions within wind farm models remain challenging to
capture as a result of wake superposition [10], boundary layer interactions [6,11], complex terrain [12],
Coriolis forces [13], deep array effects [14,15], and other neglected physics. When wind turbines are
tightly spaced in a wind farm, the individual turbine wakes merge into a large wind farm wake [16].
Wind farm wakes may extend over tens of kilometers and have been shown to influence downwind
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wind farms [17–19]. Van der Laan et al. [20] used Reynolds Averaged Navier–Stokes simulations to
predict the magnitude of interaction between two wind farms as a result of the merged wind farm
wake. While this merging effect can be captured using computationally expensive simulations such
as numerical weather prediction or large-eddy simulation, it is challenging to capture with low-order
wake models [17]. As a result of these complexities, contemporary studies typically rely on high-fidelity
numerical simulations [21]. While physics-based wake models are able capture the qualitative trends of
wind farm power production [4,6], quantitative predictions of power production remain inaccurate as a
result of wake model simplifications. The complexities of incorporating these phenomena in large wind
farm models was recently reviewed by Sanz Rodrigo et al. [22].

Recent developments in neural network based machine learning have led to a significant leap
in the ability for statistical approaches to model complex datasets (see, e.g., [23,24]). Deep neural
network approaches have provided useful insights when informed by the governing physics of
fluid mechanics [25]. However, deep neural networks are challenging to interpret [26], which leads
to uncertainty in the ability of the models to generalize across different datasets and difficulty in
establishing new physical insights. Recent work [27,28] has shown the ability for statistical models to
efficiently maximize wind farm power production in a control oriented approach with a physics-driven
wake model. Further, neural networks have been used extensively to improve wind farm power
forecasting (see, e.g., [29–31]). Due to the known deficiencies of low-order wake models in capturing
the complex physics of utility-scale wind farms and given the recent successes of statistical approaches
to model wind farm power production, we propose a statistically driven wake model. The statistical
model is guided through physical insight to reduce overfitting and aid in robustness.

In Section 2, interpretable physics-informed statistical wake models are proposed as well
as a previously developed physics-driven low-order wake model for comparison. The various
models are compared in Section 3 in the analysis of a utility-scale wind farm in Alberta, Canada.
Physical interpretations of the statistical model are given in Section 4 and conclusions are given in Section 5.

2. Wind Farm Power Models

The development of accurate, computationally efficient power production models is particularly
useful in the study of wind farms due to their widespread use in layout optimization [32,33]
and active-control [34–37]. Low-order wind farm models continue to be relevant for engineering
applications due to the computational expense of fully-resolved [38] or even large-eddy
simulations [39]. While physics-driven wake models are predominantly used in control oriented
approaches [40], statistical machine learning models have been utilized for the purpose of power
forecasting (see, e.g., [41]). In this section, we review a physics-based model and propose a suite of
statistical models for the purpose of control- and design-oriented wake prediction.

2.1. Physics-Based Model

Physics-driven analytic wake models have been extensively applied for the purpose of wind
farm power prediction [5]. While such analytic models are lower in reliability than high fidelity
simulations, they can accurately capture wind farm power production trends [4]. Low-order models
are particularly relevant for the purpose of online control of wind farm power as a function of
time for energy grid optimization (see, e.g., [42–44]) due to the computational expensive of online
large-eddy simulations [45]. The physics-based, low-order model selected here is the Gaussian wake
model [7] with the momentum theory prescribed by Prandtl’s lifting line model [8]. The Gaussian
wake model is selected due to its success in reproducing the power production for field tests of
utility-scale turbines [37] while the lifting line model is chosen since it is suitable for wake steering
control optimization [8,44]. The streamwise velocity following a single wind turbine i is modeled as

u(x, y′) = u∞ − δui(x)
D2

8σ2
0,i

exp

(
− (y′ − yc,i(x))2

2σ2
0,id

2
w,i(x)

)
, (1)
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where D is the turbine diameter, σ0 is the proportionality constant of the presumed Gaussian wake, dw

is the normalized diameter of the wake, the streamwise velocity at the most upwind turbine is u∞, x is
the streamwise direction, and y′ is the lateral direction in the frame of the upwind turbine. The lateral
centroid of the wake is yc. The streamwise velocity deficit is prescribed by a lifting line model given
by [8]:

δui(x) =
δu0,i

d2
w,i(x)

1
2

[
1 + erf

(
x√

2D/2

)]
, (2)

where δu0 = 2aiu∞ with a giving the axial induction factor from actuator disk theory (e.g., [46]).
While low-order models have significantly less computational complexity than turbulence

simulations, computational efficiency is still required due to the large parameter space of layout or yaw
optimization [47]. The dominant factor in the computational cost of low-order models is the spatial
domain discretization, whereby the low-order model is solved at all grid points in a computational
domain. As such, Howland et al. [44] developed an analytic power function to predict wind turbine
power production for an arbitrary wind farm layout and yaw misalignment without requiring domain
discretization. This method is at least two orders of magnitude less computationally complex than
previously used low-order models of similar fidelity. Using linear wake superposition, the effective,
area-averaged velocity at a turbine j in an arbitrary wind farm can be modeled as

ue,j(x) = u∞ −∑
N f
i

√
2πδui(x)dw,i(x)D

16σ0,i

[
erf
(

yT+D/2−yc,i(x)√
2σ0,idw,i(x)

)
− erf

(
yT−D/2−yc,i(x)√

2σ0,idw,i(x)

)]
, (3)

where the downstream turbine lateral center is yT . The deficit of velocity is computed as the linear
superposition of all upstream turbines N f [48]. The power is then computed as

P̂j =
1
2

ρAjCpu3
e,j, (4)

where ρ is the density of air and Aj is the turbine area. The coefficient of power is a function of the
wind speed and is given by Cp.

Due to the inherent nonlinearity of the wind turbine wakes as a function of the wind speed,
the analytic model requires model coefficients, which are a function of the wind speed [44]. For lower
wind speeds, wind turbines maximize power production and strong wakes are produced (i.e., u� u∞

and the downstream turbine produces significantly less power than the upstream turbine). Above the
rated wind speed, power production does not increase above the rated value and turbines will
extract a reduced fraction of the incoming wind power [49]. Therefore, above the rated wind speed,
weak turbulent wakes are produced (i.e., u ∼ u∞ and the downstream turbine produces similar power
to the upstream turbine). Since the model relies on the computation of these physical turbulent wakes,
it is not able to sufficiently generalize across the dataset for all wind speeds where the strength of the
wakes will vary. As a result, larger modeling errors may persist when the physics-driven wake model
is fit for all wind speeds rather than fitting specifically to narrow wind speed bins.

The wake spreading coefficient and the proportionality constant of the Gaussian wake is
prescribed for each wind turbine in the wind farm based on historical data. As a result, there are
2Nt trainable parameters, where Nt is the number of turbines in the wind farm. The parameters are
trained using analytic gradients [44] combined with a genetic algorithm summarized in Algorithm 1.
The model is calibrated for an arbitrary wind farm separately for each wind direction bin between 0◦

and 360◦. The model must be calibrated separately for each wind direction since the effective layout of
the wind farm is a function of the wind direction. While the same wake parameters are used for all
wind speeds, the model is run for each temporal instance in the historical data since the physics-based
model dynamics are dependent on the inflow wind speed (e.g., CT).

The genetic algorithm minimization MinError takes in the historical baseline data P and the
initialized wake spreading rate and proportionality constant of the Gaussian wake, kw,0 and σ0,0,
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respectively. The algorithm also requires the coordinates of the wind turbines. The number of parents
in the algorithm is N, the number of parents selected for the next generation is k, and σk and σσ are the
standard deviations of the mutation perturbations applied to the children. The Forward algorithm is
the lifting line model described by Equations (3) and (4). The Forward algorithm requires the turbine
coordinates within the wind farm which are given by X. The error is computed as a mean absolute
error (MAE)

MAE(P̂n, P) =
〈∣∣P̂n − P

∣∣〉 , (5)

where |·| is the absolute value operator and 〈·〉 is the average over the turbines in the wind farm.
The analytic gradients are computed using the Backward algorithm, which uses a computational
graph to compute gradients based on the parametric state of the model (see, e.g., [23] for a review).
The parameters are updated using Adam gradient descent [50] using GradientUpdate. Once all
parents (N) have been iterated through, the k parents with the lowest error e are selected using
Select. The new parents are created using a CrossOver algorithm, which averages two randomly
selected parents from the k best performers to create N new parents. Finally, Gaussian noise with zero
mean and standard deviations σk and σσ are added to the new parents in Mutate. Once the MAE (ε)
reaches the desired threshold TOL, the algorithm is terminated and the best parameters kw,b, σ0,b are
returned. Numerical experiments resulted in the selection of N = 100, k = 10, MaxIt = 10, σk = 0.01,
and σσ = 0.03. In the present study, the tolerance parameter TOL was not set and all training ran
until MaxIt.

Algorithm 1 Genetic algorithm gradient descent minimization of mean absolute error of lifting
line model.

MinError(P,kw,0, σ0,0, X, N, k, σk, σσ):
kw, σ0, t← kw,0, σ0,0, 0
while ε < TOL and t < MaxIt do

for n← 1 : N do
P̂n ← Forward(kw,n, σ0,n, X)
en ←MAE(P̂n, P)
∂en/∂kw,n,∂en/∂σ0,n ← Backward(en, kw,n, σ0,n, X)
kw,n, σ0,n ← GradientUpdate(∂e/∂kw,n,∂e/∂σ0,n)

end for
kw,1:k, σ0,1:k, ε1 ← Select(kw,1:N , σ0,1:N , e1:N , k)
if ε1 < ε then

kw,b, σ0,b, ε← kw,1, σ0,1, ε1

end if
kw, σ0 ← CrossOver(kw,1:k, σ0,1:k)
kw, σ0 ←Mutate(kw, σ0, µk, σk, σσ)
t← t + 1

end while
return kw,b, σ0,b



Energies 2019, 12, 2716 5 of 21

2.2. Physics-Informed Statistical Model

In large wind farm configurations that contain significant streamwise spacing, low-order wake
models are generally less accurate (see, e.g., [6]). In particular, the wake interaction of far wakes
and their inherent merging into a so-called wind farm wake is typically not well captured by
the traditional forms of wake superposition [51]; additionally, large-scale atmospheric boundary
layer (ABL) structures [52,53], which influence mixing and wake decay, are typically neglected [6].
As a result, in this section, we revisit the predominant cause of the power model breakdown, namely
the modeling of streamwise velocity deficit as a function of downstream position.

Following the assumptions of inviscid flow, neglecting Coriolis and stratification effects,
linearizing the advection term, and Reynolds-averaging, the momentum equation governing the
transport of δu = u∞δi,1 − ui is

ρ
δ

δt
(u∞δi,1 − ui) + ρu∞

∂

∂x
(u∞δi1 − ui) =

∂P∗

∂xi
− fi +

∂τij

∂xj
, (6)

where P∗ is the pressure, fi is the turbine forcing, and τij is the Reynolds stress tensor [8].
Parameterizing the wake with a spreading coefficient and area averaging results in an ordinary
differential equation in x which can be analytically solved to give Equation (2). While the prescription
of δu0 follows inviscid theory, the solution of Equation (6) requires a significant number of assumptions
and parameterizations. Further, upon solution, the velocity deficits within a multi-turbine wind farm
must be then superposed in an ad-hoc method, which is not necessarily based on physical laws of
conservation [6]. Finally, the functional form of δu(x) given by Equation (2) is diminished in accuracy
in the far wake due to the linearization of the advection term.

As a result, we propose to utilize data-driven machine learning to inform the wind farm power
production. We determine which turbines are well-correlated through the minimization of a loss-based
objective function. In particular, wind turbine power is modeled as

P̂i =

N f

∑
j

wi,jPj, (7)

where N f is the number of turbines in front of turbine i. In Equation (7), the power prediction for
a downstream turbine is a linear regression based on the power generated by upstream turbines.
A sketch of the statistical model architecture can be seen in Figure 1. This is similar to the construction
of a directed acyclic graph [54] where we construct a connectivity among the turbines within the wind
farm. An upstream turbine j is connected to all subsequent downstream turbines i with a corresponding
weight value, wij. This model architecture is similar to multi-dimensional linear ordinary least squares
with an objective function of MAE (least absolute deviations) instead of square residual minimization.
A unique solution is not guaranteed with least absolute deviations but solutions are typically more
robust [55] than least squares (see Appendixes A and B).

However, spatiotemporal wind turbine wake interactions are inherently variable and nonlinear as
a function of wind speed [56,57]. The wind turbine thrust coefficient CT is a function of the wind speed,
as shown in Figure 2. At low wind speeds, the coefficient of thrust is high, as shown in Figure 2a,
and the wake losses will be large. As the wind speed approaches 15 m/s, where rated power occurs,
the CT sharply decreases and wake losses will be small since wakes will not be driven by the turbine
induction. Therefore, the linear fit given by Equation (7) may not capture wake interactions that are a
function of the incoming wind speed.
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Figure 1. Diagram of the statistical model architecture. The dots represent wind turbines with flow
from left to right. The power production of all upstream turbines are used for the power prediction of
a given downstream turbine. The red arrows denote the weighted connection of the upstream turbine
to the downstream red turbine. The blue arrows denote the weighted connection of the upstream
turbines to the downstream blue turbine.

Figure 2. (a) Vestas V80 manufacturer rated coefficient of thrust curve (CT) compared with the
Sigmoid-type activation function σCT , which is based on the inherent wake strength nonlinearity caused
by the wind turbine CT curve. The activation function is given by Equation (8). (b) Nonlinearities
applied to the Vestas V80 power curve. The sigmoid-type activation function is σCT . The σCT

nonlinearity was designed such that σCT (P) · P followed CT · P.

One method to adequately compensate for these nonlinearities would be to generate separate
weight values for separate wind speed bins, i.e., weight values for wind speeds of 5–6 m/s, separate
values for wind speeds of 14–15 m/s and so on. On the other hand, various turbines within the wind
farm may operating at different points on the CT curve for a fixed time. Another method to introduce
such nonlinearities in a strictly data-driven approach is to implement a neural network architecture.
The typical nonlinearities implemented in multi-layer neural networks are the sigmoid function and
the rectified linear unit (ReLU) [23]. However, mutlilayer neural networks with an arbitrary number of
weights are notoriously difficult to interpret [26] and pose a significant disadvantage when compared
to the simplicity of Equation (7). Further, larger neural networks are subject to overfitting to the
training set and regularization is typically required [23]. In the present case, the wind turbine control
systems present a consistent CT nonlinearity via the dependence of CT on wind speed, which can be
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utilized directly in the model. As such, a sigmoid-type activation function was tuned to the CT curve
as a function of the power generation. The resulting sigmoid-type function is

σCT (P) =
1

2.03

(
1

1− e−2(P−2) + ε
+ 2.03

)
, (8)

where ε is 10−8 for numerical stability. The input P is the power of a turbine given in MW and is
therefore bounded by 0 and 1.8 for the 1.8 MW Vestas V80 turbines. The parameters in the sigmoid-type
function were tuned heuristically such that σCT (P) · P approximately followed CT · P. The results
were not significantly sensitive to the tuning parameters given a function bounded by 0 and 1 and is
approximately zero valued at P = 0 and P = 1.8. The tuned sigmoid-type function compared to the
CT nonlinearity can be seen in Figure 2b. The resulting wind power model is

P̂i =
1
2

N f

∑
j

ki,jPjσCT (Pj) + ci,jPj[1− σCT (Pj)], (9)

where k and c are learnable matrices. While the learnable parameters are unbounded and arbitrary
valued, a premultiplier of 1/2 was used to reduce the occurrence of saddle points in the training
process. The nonlinearity σCT can also be replaced with a standard sigmoid nonlinearity which is
not tuned to CT . The weight vectors for turbine i are ki, ci ∈ IR(N f ,1). The parameter ki,j is active at
lower wind speeds and ci,j is active at higher wind speeds. The nonlinear Equation (9) is tested with
σCT in Equation (8) and the standard Sigmoid function (σ). Additionally, these model performances
are compared to a standard two-layer neural network [58]

P̂i =

N f

∑
j

w2
i,jσNN(w1

i,jPj + b1
i,j) + b2

i,j, (10)

where now the weights matrices (w1, w2) and the biases (b1, b2) are not the same dimensionality.
In particular, the weight vectors for turbine i are w1

i ∈ IR(N f ,N f ) and w2
i ∈ IR(N f ,1). The biases for

turbine i are b2
i ∈ IR(1,1) and b1

i ∈ IR(N f ,1). Therefore, Equation (10) has N f (N f + 2) + 1 learnable
parameters for each turbine while Equation (9) has only 2N f learnable parameters. A standard neural
network nonlinearity such as the sigmoid or ReLU functions is represented by σNN . The present study
focused on the ReLU nonlinearity. A premultiplier was not used in the neural network approach since
this architecture is less subject to saddle points due to the high dimensional space of the trainable
parameters. Deep neural networks were not tested in the present study due to the large number of
learnable parameters in these methods, the associated tendency to overfit to the training data, and the
challenge of interpretability [26]. The trainable parameters for all statistical methods introduced here
and their associated degrees of freedom are summarized in Table 1.

Wake models are typically constructed to accurately represent the streamwise velocity deficit [5,59]
based on a known freestream velocity condition. This approach simplifies the modeling endeavor
to a characterization of the small deviations from the known freestream velocity rather than
a reconstruction of an unknown velocity signal. Such an approach can be seen in Equation (3),
where the u∞ is known and the model coefficients dictate ∆u, the velocity deficit. To reduce the
modeling effort required for the statistical model approaches, a data-driven model based on the deficit
of power is constructed
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P̂i = P∞ −
1

N f

N f

∑
j

wi,jPj, (11)

where P∞ is the power production of the wind turbine operating at u∞. A premultiplier of 1/N f was
selected for the deficit approach to place the summation term in the same order of magnitude as P∞.
The statistical deficit model given by Equation (11) is linear. A similar deficit model can be constructed
using the coefficient of thrust based nonlinearity used in Equation (9)

P̂i = P∞ −
1

N f

N f

∑
j

ki,jPjσCT (Pj) + ci,jPj[1− σCT (Pj)]. (12)

With the specified architectures, the weights and biases summarized in Table 1 can be found
through analytic gradient descent optimization. The loss function used for optimization was MAE and
the weight matrix was optimized using analytical backpropagation with an Adam optimizer [50] with
the standard values of the learning rate α = 10−4, β1 = 0.9, and β2 = 0.999. Numerical algorithms
were implemented in the machine learning package PyTorch [60] in Python.

Table 1. Learnable parameters and their associated degrees of freedom (DoF) for the statistical models
used in the present study. The degree of freedom is given for the prediction of a single arbitrary turbine
within the wind farm with N f turbines in front. The linear and nonlinear learnable parameters apply
to the deficit and standard methods.

Method Parameter DoF

Linear w N f

Nonlinear k N f
c N f

Neural network

w1 N2
f

b1 N f
w2 N f
b2 1

2.3. Physics-Informed Initialization

The initialization of weights and biases in neural networks is one of the foremost challenges in the
complexity of the models [61]. Poor initialization leads to slow or stalled training and insufficient model
performance [50]. The problem is particularly paramount due to the non-convexity of the optimization
problem which subjects it to local minima (saddles in high dimensions). While deep networks
are, in general, not sensitive to local minima [23], this is not the case in small or shallow networks
(e.g., two-layer neural networks). In machine learning problems with physical applications, we can
select an initialization which is based on the physical understanding of the problem. Such a selection
is similar to the choice of a prior statistical distribution in Bayesian networks [54].

Wakes of objects in turbulent flows exhibit a Gaussian shape in the transverse direction in the
far field [6]. Wind turbines in the turbulent ABL have also been shown to exhibit a Gaussian velocity
deficit profile in the transverse direction [62]. As a result, single wind turbine wakes are often modeled
as a velocity deficit spread along a Gaussian kernel [7]. While the Gaussian wake profile becomes less
clear when wakes merge and are superposed within a wind farm [13], it remains a helpful starting
point for modeling [63]. Further, as a result of conservation of mass, the wake will expand downstream
of the turbine. While the expansion of the wake diameter is still an open question and likely depends
on the magnitude of atmospheric turbulence [64] and the type of stratification [6,44], it will likely serve
as a useful initial condition for the statistical models.
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Following the hypothesis that wakes are Gaussian, the weight value connecting two turbines was
initialized as

wij = exp
[
(yT,i − yT,j)

2
]

. (13)

Incorporating the wake spreading rate in the weight initialization did not significantly influence
the results.

2.4. Statistical Model Development Set Protocol

Statistical model parameters were calibrated using a training set and tested for generalization
using the development set. With very large datasets, it is common to leave less than 10% of the
examples for validation (see, e.g., [65]). The present dataset was split into training, development, and
testing sets as per the typical convention of statistical modeling approaches. The dataset was split
such that approximately one third of the data points are within each of the training, development, and
testing sets. The training, development, and testing sets were split such that they do not share data
samples from the same day. This reduces the ability for the model to successfully overfit to specific
features given limited data samples [24]. Since the statistical models are unbounded and unconstrained
by physics, they can generally reproduce the training dataset arbitrarily well if sufficiently flexible.
The development set was used to evaluate the statistical models during training but was not used for
the calculation of gradients during the training process. The testing set was not tested until the final
model was selected to reduce training bias. While no explicit regularization was incorporated into any
of the statistical learning frameworks, early stopping was used where the trained set of parameters
with the lowest development set error was selected rather than the set of parameters with the lowest
training error.

The statistical models rely on power production information for all upstream turbines to make
a prediction of the power production of a downstream turbine. After training, the physics-based
model only requires the wind speed (u∞) incident on the turbine furthest upstream to make power
predictions for all turbines within the wind farm. A standard development set protocol was established
for the statistical models to ensure a valid comparison between the physics-based and data-driven
approaches. For the development set testing with the statistical models, only the power production
data of the most upstream turbine were given to the model. The power production predictions were
then used for successive predictions as the model propagates downwind for all turbines.

The models were trained on all wind speeds but the training and development errors are shown
for below selected wind speed ranges. Wind speeds above the rated wind speed of 15 m/s were not
included because these training examples artificially reduce the MAE for all architectures. This artificial
reduction occurs because, above the rated wind speed, nearly all turbines within the wind farm are
producing rated power and there are not significant wake losses.

For the physics-based lifting line model, the parameters which give the best performance on the
training set were utilized for the model comparisons. For the statistical models, while the parameters
were learned from the training dataset, the parameters with the best performance on the development
set were taken as the standard machine learning protocol [23].

3. Model Evaluation on Utility-Scale Wind Farm

To validate the potential of the physics-informed statistical methods to model wind farm power
production, the aforementioned suite of physics-driven and statistical models were tested using
supervisory control and data acquisition (SCADA) data. The operational wind farm data are described
in Section 3.1 and the models are compared in Section 3.2.

3.1. Utility-Scale Wind Farm

Five years of operational one-minute averaged SCADA data were used from a wind farm
in Alberta, Canada. The wind farm consists of 23 irregularly spaced Vestas V80 turbines,
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as shown in Figure 3a. The wind farm layout was designed for predominantly high speed
flow from the southwest at approximately 250◦ (Figure 3b). However, low speed flow from
the northwest occurs during approximately 10% of the nocturnal operation. Wind turbine
spacing is approximately 10–15 turbine diameters for southwest flow while spacing is approximately
3–4 diameters for northwest flow. The model comparison focused on both the closely spaced
330◦ ± 5◦ inflow and the sparsely spaced 250◦ ± 5◦ inflow.

The wind inflow conditions were measured using nacelle mounted anemometers. Cup and sonic
anemometers were used to measure the wind speed. The wind direction was measured using the
nacelle direction, which was controlled to minimize the yaw misalignment angle measured between the
nacelle direction and the nacelle mounted wind vane. The wind direction is prescribed by an average
of the measurements of Turbines A1 and B1, which are in freestream conditions for the northwest and
southwest flows. The wind speed model comparison conditional averaging is prescribed by Turbine
B1. Model comparisons focused on wind turbine Columns A–D (Figure 3). The power production
for the Summerview wind farm was taken from the SCADA data at a matched one-minute average
instance for all wind turbines. Large wind farms have a advection time scale associated with the flow
through time [66], which depends on the wind speed [67], but was neglected in this study. Some spatial
discrepancies may occur due to the advection time within the wind farm [66], complex terrain [12], or
mesoscale structures.

The Vestas V80 1.8 MW Turbine B1 power curve is shown in Figure 4. A reference manufacturer
power curve is compared with the data. Time steps in which at least one turbine in Columns A–D is
curtailed (defined here as producing at least 300 kW more or less than the power curve would suggest
for a given wind speed) are removed from the dataset since the wake model would be corrupted due
to the derating during such a circumstance. While the standard deviations in the power curve are
small compared to the mean in Figure 4, the majority of the uncertainty within the dataset comes from
noisy sensors and local discrepancies between wind turbines [68].

Each wind direction is split individually to ensure the quality of the data for each condition in
each set. For 250◦ inflow, the number of examples are 12,286/13,027 in the training and development
sets, respectively. For 330◦ inflow, the data split is 3462/3571.

Figure 3. (a) Summerview wind farm in Alberta, Canada oriented with the cardinal directions,
viewed from above. The circles have a diameter of approximately D. Turbines within each column are
numbered north to south. (b) Wind rose for the Summerview wind farm measured by Turbine B1.
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Figure 4. Power curve for a Vestas V80 turbine at the Summerview wind farm in Alberta, Canada for
250◦ inflow. The raw one-minute averaged data are shown with dots. Averaged data in 0.25 m/s bins
are shown in red. The error bars represent one standard deviation in the data and are assumed to be
symmetric about the mean. Horizontal error bars of ±0.25 m/s are not included in the figure. Pref is
a reference manufacturer power curve.

3.2. Results

The various wake model architectures were trained and validated using the Summerview wind
farm SCADA data. The influences of the initialization in the statistical models are discussed in
Section 3.2.1. The various model architectures are compared in terms of MAE for 250◦ ± 5◦ inflow in
Section 3.2.2 and for 330◦ ± 5◦ in Section 3.2.3. Finally, as presented in Section 3.2.4, the physics-based
model was tested and key challenges with the physics approach were identified.

3.2.1. Initialization of Statistical Methods

The influence of the initialization method was tested for the CT nonlinearity method given by
Equation (9) for inflow from 330◦. The initialization of the weight matrices did not significantly
influence the final training MAE shown in Table 2. This result is anticipated since there are enough
trainable parameters to reproduce the mean power production with high accuracy. However, the Xavier
initialized method does not generalize sufficiently in the present dataset to the development set shown
in Table 2.

Table 2. Comparison of initialization methods for the statistical learning model for inflow from 330± 5◦

for all wind speeds in the dataset. The statistical learning model is initialized with the Xavier [69] and
the Gaussian (Equation (13)) approaches.

Method MAE Train (MW) MAE Dev (MW)

Xavier 0.005 0.032
Gaussian 0.005 0.020

3.2.2. Influence of Architecture for 250◦ Inflow

The MAE for the training 250◦ dataset are shown for all architectures in Figure 5a. We can make
a few main observations. The statistical models are all able to outperform the physics-based approach
on the training set except for the σ nonlinear model. This is expected since the statistical models are
not constrained by physics and have significantly more learnable parameters, allowing these models to
produce the power production for which they are trained with high accuracy. In general, the two-layer
neural network has the lowest training MAE since it has the largest set of trainable model parameters
(see Table 1). The other statistical methods have similar training MAE values.
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For the development dataset for 250◦ inflow (Figure 5b), differences arise between the various
statistical methods. The linear method, CT nonlinear method, and two-layer neural networks perform
similarly while the σ nonlinear method does not generalize to the development set. The linear method
generalizes fairly well to the development set at different wind speeds. The physics-based method
generally outperforms the statistical methods except for the deficit approaches.

The deficit approaches, both linear and CT nonlinear, reduce the development set MAE
significantly when compared to the other statistical methods with the same number of tunable
parameters. This result confirms that these shallow networks (one or two layers) are sensitive to local
minima in training. Further, we can leverage a physics-informed architecture in order to improve model
generalization and performance on the development dataset. The deficit architectures, both linear and
nonlinear, reduce the development set MAE values by approximately a factor of two compared to
the standard two-layer neural network in the u∞ = 7–8 m/s case. The deficit architectures have less
development MAE than the physics-based approach.

Figure 5. (a,b) Mean absolute errors for the various low-order model architectures for the (a) training
and (b) development datasets for 250◦ inflow. (c,d) Mean absolute errors for the various low-order
model architectures for the (c) training and (d) development datasets for 330◦ inflow.

3.2.3. Influence of Architecture for 330◦ Inflow

The results are similar for the 330◦ inflow case. The MAE for the 330◦ inflow case is generally less
than 250◦ since the wind speeds are lower from this direction (see Figure 3b), resulting in less power
production. The deficit architectures have less development set MAE compared to the other statistical
methods and the physics-based approach for the u∞ = 0–15 m/s and u∞ = 7–8 m/s cases. The errors
for the physics-based lifting line model are relatively high for the 330◦ inflow case on the training
set for u∞ = 6–7 m/s. This is due to differences in the measured wind speed between the various
turbines within the wind farm. In particular, there are differences between the wind speeds measured
by Turbines A1, B1, and D1 which operate in freestream for 330◦ inflow. These differences among
the turbines in freestream are less significant in the 250◦ inflow. This is likely due to the lower wind
speeds where uncertainties in the wind speed measurements are more pronounced (see, e.g., [70]).
As discussed in Section 3.2.4, the differences in freestream wind speeds between turbines are not
captured in the present physics-based model architecture and should be included in future work.
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In the present nonlinear network architecture (Equation (9)), the CT nonlinearity significantly
outperformed the σ nonlinearity on the development datasets. In the present statistical models, the
power production training data are not normalized or mean shifted, which is the standard practice in
machine learning with neural networks [23]. Normalization and mean shifting significantly increased
the final development MAE for the shallow networks considered in this study due to sensitivity to
saddle points during training (not shown for brevity). As a result of the lack of mean shifting, the σ

function likely saturates with development data for which the model was not trained. Since the CT
method was designed specifically for the input range of the Vestas V80 power production, nonlinear
activation saturation only occurs above the rated wind speed (see Figure 2).

3.2.4. Physics-Based Model

The physics-based lifting line model described in Section 2.1 has higher training and development
dataset errors for the SCADA data for the Summerview wind farm than the data-driven approaches
for some wind conditions. The physics-based lifting line model described in Section 2.1 is calibrated
to the historical SCADA data for the Summerview wind farm in Alberta, Canada. The inflow wind
speed is prescribed by Turbine D1 and the inflow wind direction is prescribed through an average
of Turbines A1 and B1. The 250◦ inflow direction trained model power production is compared to
the SCADA data and the linear model predictions for 250◦ ± 5◦ inflow in Figure 6a. As shown in
Figure 3, for 250◦ inflow, Column D and parts of Columns B and C are in freestream inflow. This is
represented in the model predictions where a significant number of turbines produce freestream power.
However, in the SCADA data, several wind turbines that should produce freestream power levels
through geometry are under-performing the power production of Turbine D1. This is likely due to the
physics neglected in the lifting line model. In particular, there may be small topological differences
within the wind farm which may cause local pressure gradients and wind acceleration [21] as well as
mesoscale atmospheric structures [22] and operational discrepancies between the turbines. Since these
physics were neglected in the development of the wake model, the wake model fit cannot capture
these trends in power production. As a result, the physics-based wake model is constrained by the
physics and cannot fully capture the power production. On the other hand, the statistical model is
not constrained by a fixed inflow velocity u∞ measured at Turbine D1 and may fit the training data
arbitrarily well given the number of trainable parameters.

For inflow from 330◦ ± 5◦, the spacing between the wind turbines is small. For these wind
directions, the physics-based model has lower MAE than the linear statistical method (Figure 5d)
and the wake losses are well captured, as shown in Figure 6b, for u∞ = 6–7 m/s in the development
set. These data are model predictions since the physics-based model was not trained or tested for
generalization on the validation dataset. The wake model shares the same parameters for all wind
speeds which leads to power prediction error since wake losses are a function of the incoming wind
speed. As a result, there are still some errors in the prediction of the wake losses.

Another key challenge in modeling the power production of a large wind farm is the inability
for the static, time-averaged wake models to capture dynamic wake meandering (see, e.g., [63,71])
and wind gusts. The physics-based wake model assumes unidirectional, constant winds which is a
coarse representation of the true ABL. The inflow direction of the unidirectional winds are prescribed
by the nacelle positions of Turbines A1 and B1. However, this wind direction is subsequently used as
the prescribed condition for Turbine C7 which is approximately 3.5 km away. Consider inflow from
330◦ for example. It is likely that the wakes of Column B turbines will merge into a large wind farm
wake [16]. This wake is then subject to large-scale dynamic wake meandering which may cause it to
directly impinge or miss Column C entirely. In the static wake model approach, these dynamics are
averaged out and the Column B wakes would be represented as a fairly weak wake impinging upon
Column C.

Finally, the present static model does not incorporate the influence of Coriolis forces which
have been shown to play a role in the wakes of large wind farms in simulations [20] and field
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observations [16]. A basic model for the influence of Coriolis forces on the wakes of wind turbines was
proposed by [13] but has not been validated in experimental studies and is left for future work.

Figure 6. Average power production as a function of turbine number for the lifting line model and
linear weight matrix method in Equation (7) for inflow from (a) 250◦ ± 5◦ training data for all wind
speeds and (b) 330◦ ± 5◦ development data for u∞ = 6–7 m/s. Turbines are numbered following
Columns A–D. Turbine 8 is a 2 MW machine while the rest are 1.8 MW.

4. Interpreting the Statistical Learning

Machine learning has been applied to a wide variety of problems generally [23] and in fluid
mechanics specifically (see, e.g., [24,25]); however, physical interpretability has generally been
challenging. The present statistical methods are able to achieve low training and development MAE
values for the present dataset, suggesting that the methods are potentially able to learn physically
relevant statistically consistent relationships between the wind turbines. The statistical network is
similar to a weighted directed acyclic graph for which a number of methods of visualization exist (see
review by Herman et al. [72]). Presently, we visualize the connectivity through the magnitude and
sign of the trained parameters (referred to hereafter as the dot plot). In particular, wi,j of Equation (7)
is visualized for each downstream turbine with a fixed upstream turbine (black circle). The parameter
wi,j is similar to a correlation in a regression model. The size of the circle describes the magnitude of
wi,j and blue is a positive value while red is negative. The dot plot visualization method is used to
qualitatively observe the learned methodology of the statistical learning used in this study. The focus
of this visualization is the simple linear weight matrix in Equation (7) since shallow networks with
fewer trainable parameters are generally more interpretable.

The dot plot visualization of the weight matrix wi,j is shown for 330◦ inflow for Turbine B1 in
Figure 7a. Turbine B1 is the most upstream turbine so all downstream turbines have a connecting
weight value w1,j∀j ∈ 2 : Nt. Further, Turbine B1 is a turbine which operates in freestream flow.
Turbines A1 and C1 have a large weight connection to B1, likely because they are turbines also
operating approximately in freestream flow. However, Turbine D1 is not significantly correlated.
This could be due to topological differences or lateral variations between large-scale motions in the
atmospheric boundary layer [73,74].

All turbines within the wake of Turbine D1 have similar values of wi,j, as shown in Figure 7b.
These learned parameters are very similar to the assumptions of connectivity used by [47] in a wind
farm network configuration.
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(a) (b)

Figure 7. (a) Weight matrix wi,j in Equation (7) visualization for inflow from 330◦ ± 5◦ the linear
statistical method. The value of the weight matrices for downstream turbines is plotted with respect to
the black dot upstream Turbine B1. The size of the circle represents the magnitude of the weight matrix
value and blue represents positive while red is negative. (b) Same as (a) with the upstream turbine
of D1.

Influence of Statistical Learning Initialization

The initialization influenced the final trained parameters of the statistical wind farm model since
shallow networks are subject to local minima. In this section, ki,j of Equation (9) is visualized for
each downstream turbine with a fixed upstream turbine. This visualization is shown in Figure 8,
where the Gaussian initialization is compared to the standard Xavier initialization [69]. The weight
matrix correlations to Turbine D1 are visualized for the Xavier initialized model in Figure 8a and
are difficult to interpret. On the other hand, the Gaussian initialized statistical method significantly
correlates nearby turbines as well as turbines which are in the wake of Turbine D1 as shown in
Figure 8b. Some wind turbine connectivity had reasonable qualitative agreement between the two
initializations as shown in the correlation to Turbine B1 in Figure 8c,d.

(a) (b)

(c) (d)

Figure 8. Weight matrix visualization for the CT nonlinearity method with (a) Xavier [69] and (b)
Gaussian initialization for Turbine D1 and (c) Xavier and (d) Gaussian for Turbine B1. For the CT

nonlinearity method in Equation (9), ki,j is visualized. The value of the weight matrices for downstream
turbines is plotted with respect to the black dot upstream turbine. The size of the circle represents the
magnitude of the weight matrix value and blue represents positive while red is negative.
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Both initialization methods correlated the leading turbines of the columns (Columns A and C)
with Turbine B1 (Figure 8c,d). The leading turbines of each column are operating in mostly freestream
conditions as a result of the large spacing between the columns. Therefore, it is expected that leading,
freestream turbines will have similar power production [47]. The dot plots confirm that the statistical
methods may be learning physically relevant correlations and connections between wind turbines
within the farm.

5. Conclusions

In the present paper, several novel statistical wake models are proposed to predict wind farm
power production with the input of only the most upstream turbine power. These statistical methods
were developed to overcome observed errors in wind farm power prediction by industry standard
wake models, which occur as a result of model simplifications and assumptions. The statistical models
were constructed to contain a similar number of trainable parameters to common industry wake
models (e.g., Jensen model or Gaussian model [7]) in order to reduce overfitting to the training set.
Additionally, reducing the number of training parameters increases the interpretability of the trained
model constants. The most successful newly developed deficit-based data-driven network relies on
physical information about the fluid dynamics of turbulent wind turbine wakes including Gaussian
profiles for model initialization and power deficit for model architecture. Further, model nonlinearities
are informed by the inherent nonlinearity in the wind turbine thrust as a function of the wind speed.

The deficit statistical models reduced the mean absolute error on the development dataset
significantly compared to a standard two-layer neural network. The deficit statistical model reduced
the development dataset mean absolute error compared to the standard linear weight matrix method
with the same number of trainable parameters. This observation confirms that shallow statistical
models are subject to local minima due to their low dimensionality and this may be mitigated through
physics-informed statistical models.

The linear deficit wake model reduced the development dataset mean absolute error by 38%
and 6% for the 250◦ and 330◦ inflow, respectively, compared to a physics-based low-order wake
model. This success was due to the relaxation of physical constraints and model assumptions.
Importantly, with the development dataset test protocol used in this study, the statistical and physical
models can be compared with the same quantity of SCADA data inputs. While the physics-based
model has advantages in control oriented approaches (see, e.g., [37,40,44,75]), statistical models reduce
the power prediction error. Future work will consider how to incorporate controllability into the pure
statistical approaches. Additionally, wind farm power forecasting errors remain a key issue in the
integration of this low-carbon resource [76]. While weather variations account for the majority of
forecasting challenges [77], wake losses contribute to the uncertainty. Future work will incorporate
wind power forecast models with the newly developed statistical methods.
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Abbreviations

The following abbreviations are used in this manuscript:

A Wind turbine rotor area
a Axial induction factor
α Learning rate
ABL Atmospheric boundary layer
Cp Coefficient of power
CT Coefficient of thrust
ρ Density
D Wind turbine diameter
DOAJ Directory of open access journals
DoF Degrees of freedom
kw Wake spreading coefficient
MAE Mean absolute error
MDPI Multidisciplinary Digital Publishing Institute
N f Number of frontal wind turbines
NN Neural network
LL Lifting line model
ReLU Rectified linear unit
SCADA Supervisory control and data acquisition
σ0 Gaussian wake proportionality constant
σCT CT based nonlinearity
σ Sigmoid function
ue Effective velocity
u∞ Freestream velocity
yc Lateral wake centroid

Appendix A. Comparison of Linear Weight Matrix Method with Linear Ordinary Least Squares

The linear weight matrix method in Equation (7) is formally similar to linear ordinary least
squares, which minimizes the sum of squared model residuals in the training dataset. For linear least
squares, the power for a turbine i can be modeled as

P̂i =

N f

∑
j

βi,jPj (A1)

where βi,j are weights. There is a unique solution for βi,j. This can be represented as a vector βi for
each turbine i

βi =
(

PT
f Pf

)−1
PT

f Pi (A2)

where Pf is a matrix of the power production of the turbines in front of turbine i and Pi is a vector of
power production for turbine i. While this method provides a unique solution to the minimization
problem, ordinary least squares is not robust and generally produces errors in predicting conditional
averages [55], which is particularly relevant to the wind farm modeling problem. Following the
development set protocol (Section 2.4) for inflow from 330◦, the ordinary least squares development
set MAE for 0–15 m/s is 0.0737 MW. This is approximately an order of magnitude larger than the error
of the deficit method (Figure 5).

Appendix B. Input–Output Training Example

An input–output pair from the training dataset is shown to demonstrate the utilization of the
statistical model. The statistical methods introduced in Section 2 are used to demonstrate the model
performance on the example from the training set. The flow considered is 250◦ ± 5◦. The prediction of
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the SCADA power for Turbine C2 is considered. Turbine C2 is the 14th turbine downwind for this
inflow direction. Therefore, there are 13 turbine power SCADA data points input into the model given
by Equation (7) and 13 weight values (w14,1:N f where N f = 13). The nonlinear methods have two
vectors of weight values each of length 13 (k14,1:N f and c14,1:N f where N f = 13). The SCADA power
inputs and weight values are shown in Table A1. The model predictions are 1.467 MW, 1.432 MW,
1.528 MW, 1.483 MW, and 1.533 MW for the linear, linear deficit, CT nonlinear, CT nonlinear deficit,
and σ architectures, respectively. The SCADA power production is 1.461 MW.

Table A1. Input–output training example for the various statistical models proposed in Section 2. One
one-minute averaged data training example is shown. The inflow is from 250◦ ± 5◦. The turbine of
interest is C2, which is the 14th turbine downwind for inflow from this direction.

Turbine D1 D2 D3 D4 D5 D6 B1 B2 B3 B4 B5 B6 C1

Power (MW) 1.80 1.80 1.80 1.80 1.80 1.80 1.64 1.64 1.80 1.78 1.80 1.27 1.29

Linear, w14,j −0.010 0.279 0.014 0.129 −0.021 −0.083 0.014 0.087 0.085 −0.147 −0.014 0.262 0.423

Linear deficit, w14,j 0.781 −2.254 0.604 −1.008 1.272 1.416 0.066 0.167 0.809 1.090 0.034 −1.370 −1.490

CT , k14,j 0.257 0.629 −0.065 0.146 0.122 −0.506 0.056 0.375 0.181 −0.373 −0.054 0.746 0.648
CT , c14,j 0.117 0.533 −0.015 0.203 −0.105 −0.133 0.025 0.161 0.176 −0.319 −0.035 0.575 0.803

CT deficit, k14,j 0.268 −0.807 0.670 −1.065 −0.415 2.667 0.140 −1.066 0.282 0.822 0.977 −2.316 −0.282
CT deficit, c14,j −0.007 −1.189 0.574 −0.677 1.470 0.814 0.207 0.132 0.708 1.055 −0.001 −1.134 −1.775

σ, k14,j 0.128 0.367 −0.025 0.380 −0.084 −0.000 0.023 0.177 0.195 −0.206 −0.006 0.496 0.503
σ, c14,j 0.252 0.325 0.093 −0.032 −0.008 −0.134 0.211 0.438 0.397 −0.200 0.025 0.487 0.482
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