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Global power production increasingly relies on wind farms to
supply low-carbon energy. The recent Intergovernmental Panel
on Climate Change (IPCC) Special Report predicted that renew-
able energy production must leap from 20% of the global energy
mix in 2018 to 67% by 2050 to keep global temperatures from
rising 1.5 ◦C above preindustrial levels. This increase requires reli-
able, low-cost energy production. However, wind turbines are
often placed in close proximity within wind farms due to land
and transmission line constraints, which results in wind farm effi-
ciency degradation of up to 40% for wind directions aligned with
columns of turbines. To increase wind farm power production, we
developed a wake steering control scheme. This approach maxi-
mizes the power of a wind farm through yaw misalignment that
deflects wakes away from downstream turbines. Optimization
was performed with site-specific analytic gradient ascent rely-
ing on historical operational data. The protocol was tested in an
operational wind farm in Alberta, Canada, resulting in statistically
significant (P < 0.05) power increases of 7–13% for wind speeds
near the site average and wind directions which occur during less
than 10% of nocturnal operation and 28–47% for low wind speeds
in the same wind directions. Wake steering also decreased the
variability in the power production of the wind farm by up to 72%.
Although the resulting gains in annual energy production were
insignificant at this farm, these statistically significant wake steer-
ing results demonstrate the potential to increase the efficiency
and predictability of power production through the reduction of
wake losses.

wind energy | turbulence | data science

The Intergovernmental Panel on Climate Change (IPCC) Spe-
cial Report 15 on global warming (1) found that current rates

of emissions will result in a temperature rise from preindustrial
levels of 1.5 ◦C by 2040. Meanwhile, recent studies have pre-
dicted that the Paris Climate Agreement (2) will fail to keep
warming below the stated goal of 2 ◦C (3, 4). The Special Report
15 found that coal-based electricity generation must decrease
from contemporary rates of 40% of global energy production to
1–7%. As a result, renewable energy should compensate for this
transition, increasing from 20% of energy generation in 2018 to
67% by 2050 (1). Wind and solar will likely comprise the bulk
of these capacity additions due to their decreasing cost of elec-
tricity (5). While recent studies (5) have shown onshore wind
energy to be economically favorable compared with coal and
combined-cycle natural gas, such estimates are specific to sites
with robust, reliable wind resource. To reach the goals of the
Paris Climate Agreement, wind farms must significantly increase
in number and density as well as extend to sites with less certain
wind resource (6). As a result, methods to increase wind farm
efficiency remain paramount to reducing carbon emissions.

While the major reason for decreased wind farm efficiency is
variability in wind speed, aerodynamic losses within large arrays
of turbines are also a key issue in wind farm operation (7). Due to
the process of energy extraction from the atmospheric boundary
layer, wind turbines necessarily produce a reduced momentum
wake region immediately downstream (8). This wake will lower
the power production of downstream turbines in the array. Wake
power losses within a wind farm are a function of the incident
wind speed and direction.

Wake losses occur when the wind speed is below the rated
value (9) and turbines are at least partially aligned to the angle of
the incoming wind. The mean wind speeds at the majority of wind
farms are well below the rated value (10). Wind directions in
the turbulent atmospheric boundary layer are inherently variable
and will vary with the time of day, season, and other geophysical
parameters (11). Wind farm layouts are designed to extract the
maximum profit given historically observed wind direction and
speed distributions, which typically results in larger streamwise
turbine spacing in the most common wind directions. However,
for other wind directions, wind turbines are more closely spaced
(12). In worst-case scenarios of wind turbine spacing and inflow
directions in contemporary wind farms, there is an over 40% loss
of efficiency when the wind shifts to a direction aligned with the
columns of the turbines (13).

To minimize the aerodynamic losses between turbines under
prevailing wind conditions, the optimal streamwise spacing has
been found to be 10–15D , where D is the turbine diameter
(14–16). Modern turbines are increasing in size, with offshore
turbines now above 200 m in rotor diameter (17). The corre-
sponding spacing of turbines multiple kilometers apart signif-
icantly increases the cost of transmission lines and land use
(18). As a result, wind farm designers are left with a complex
multiobjective optimization problem which typically results in
operational turbine spacing of 6−10D (18). At this spacing, sig-
nificant aerodynamic wake losses persist in modern wind farms
when the flow is aligned with columns of turbines and the wind
speed is below the rated value (13).

While the influence of wake losses on wind farm efficiency can
be large for some inflow directions, the cumulative impact on
the annual energy production of smaller wind farms is generally
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lower since turbines are well spaced in directions of high wind
speed. However, the impact of wake losses can be significant,
as in the Horns Rev offshore wind farm where they have been
found to reduce annual energy production on the order of 20%
(13, 19). With wind farms increasing in size and quantity (20),
wake losses are becoming an increasingly important factor in
wind farm efficiency (21). While the magnitude of wake-induced
efficiency degradation will depend on the specific wind farm site,
methods which can reduce wake losses, once developed, will
likely be broadly applicable to the global wind energy fleet. As
such, potential wake mitigation methods have been a focus for
multiyear research initiatives operated by the US Department
of Energy such as the Atmosphere to Electrons (A2e) cam-
paign and the Scaled Wind Farm Technology (SWiFT) facility
(22). Given the broad potential impact of a method to mitigate
wake losses, we have developed a control scheme and tested it
on six utility-scale turbines in a wind farm in Alberta, Canada
for wind speeds and directions where wake losses have been
observed historically. Our method increased the power produc-
tion for these wind directions between 7% and 13% for moderate
wind speeds near the site annual average and up to 47% for
low wind speeds, representing a statistically significant demon-
stration of wake steering power optimization for a multiturbine
wind farm.

Aside from mean power production, wind turbine wakes con-
tribute to intermittency. Intermittent power production is caused
both by wind fluctuations in the turbulent atmospheric bound-
ary layer and by the inherent nonlinearity of wind turbine power
generation as a function of wind speed (23). Further, turbine
wakes contribute to the lack of precise controllability of the wind
farm power production. Intermittent renewable energy resources
increase the need for costly energy reserve systems to guar-
antee grid service reliability (24). When wind speeds are low,
wind turbines may oscillate about the cut-in speed as a result of
wind gusts and dynamic wake meandering (25). Control meth-
ods which reduce the variability of the power production of
wind farms, measured here as the SD of the time record of
power generation, can decrease the ancillary service require-
ments for the energy grid (26). Our method, applied at the
wind farm in Alberta, Canada, reduced the SD of the wind
farm power production up to 72% for the wind conditions of
interest.

Wake Steering Control
Recent attention has focused on mitigation of wake losses
through the use of turbine control protocols and systems
optimization that sacrifices individual turbine performance to
improve the collective wind farm performance. Several studies
have attempted to optimize the power generation of a wind farm
through the operation of the upstream turbine in a suboptimal
state to increase the efficiency of a downstream turbine (27, 28),
but the results have not yet provided a conclusive solution that
can be extrapolated to arbitrary wind farm configurations (29).

Contemporary turbine operation minimizes the yaw misalign-
ment angle, which is the angle between the axis of the turbine
nacelle and the incoming wind direction. While wind turbines
typically exhibit small yaw misalignment due to control errors
and sensor noise and uncertainty (30), the goal of industrial
control algorithms is to minimize this yaw. When misaligned
with respect to the incoming wind, wind turbines impose a lat-
eral forcing which deflects the wake region (31), as sketched
in Fig. 1A. While the misaligned turbine generates subopti-
mal power, the wake may no longer directly impinge upon a
downstream turbine as a result of the wake steering. An appli-
cation of wake steering for a six-turbine wind farm is shown in
Fig. 1 B and C. Such a control strategy has been shown to be
beneficial for downwind turbines in a number of wind tunnel
experiments (32, 33) and computational studies (34–37). Wake

Fig. 1. (A) A wind turbine with diameter D yawed at angle γ with respect
to the incoming wind and viewed from above. The incoming wind at speed
u∞ is incident from the left. The centerline of an unyawed, standard opera-
tional wake would follow the dashed blue line. The centerline of the yawed
wake follows the solid red line. (B and C) Wake model streamwise velocity
field for baseline maximum power point tracking control (B) and optimal
yaw control (C). The incoming wind speed at the most upstream turbine
is u∞ = 7.5 m·s−1 and there are six turbines modeled. The wake follow-
ing turbine six is not shown since the wake model automatically neglects
calibration of the parameters for turbine six to increase computational
efficiency.

steering has also been used in a two-turbine field experiment
which demonstrated an increase in the downwind turbine power
production as a function of the atmospheric stability (38). The
impact of wake steering on the sum of the upwind and down-
wind turbines’ power production was inconclusive in a separate
two-turbine field experiment (39). Here we demonstrate a statis-
tically significant effect of wake steering in a field study with a
six-turbine unit.

Due to experimental difficulty and computational expense,
parametric studies and real-time wind farm power optimization
are limited with previous approaches (29). As such, the develop-
ment of an accurate and computationally efficient model for wind
farm power generation as a function of wake steering actuation is
required to facilitate real-time closed-loop control (40).

Site-Specific Power Optimization
The wind turbine power, P , is a function of the wind farm
layout and inflow conditions. Additionally, a wind turbine’s
power production is a function of its yaw misalignment angle
as well as the yaw misalignment of upstream turbines which
manifests as wake deflections. We have developed an analytic
formulation to predict wind turbine power production as a
function of atmospheric conditions and the yaw misalignment
decisions of upwind turbines. Wake steering is captured using
a recently developed lifting line model (41). While the magni-
tude of wake steering (42) and the wind speed and direction
(43) are functions of the vertical dimension, the measurements
available at the site in the present study were limited to point-
wise sensors at hub height. While the incorporation of the
curled-wake three dimensionality (42) may improve the model
accuracy in certain atmospheric conditions, a 2D model is suf-
ficient to capture the key physics for the present wind farm
experiment. Details of the analytic predictive wake model are
given in SI Appendix. The maximization of the wind farm power
production through the use of wake steering is posed as an
optimization,
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maximize
~γ

Nt∑
i=1

Pi

subject to γi ∈ [γmin, γmax],

[1]

where γi is the yaw angle for turbine i , Nt is the number of
turbines, and γmin and γmax are bounds on the yaw misalign-
ment for each turbine. Eq. 1 is not convex but can be optimized
using a number of algorithms. Similar studies have previously
used genetic algorithms (44) or discrete gradients (35). Since we
have developed an analytic function to predict wind farm power
production, Eq. 1 can be optimized efficiently using analytic gra-
dients combined with the common gradient ascent strategy called
Adam optimization (45).

Site-Specific Wake Model Calibration
The model (SI Appendix) is calibrated using utility-scale field
historical data from five 1.8-MW Vestas V80 wind turbines and
one 2.0-MW Vestas V80 turbine at an operational wind farm in
Alberta, Canada. The six turbines in the wind farm are aligned
at ∼335◦, where north is 0◦ and the angle proceeds clockwise
to 360◦ at north again. With wind inflow from 335◦, the tur-
bines are spaced by ∼3.5D in the prevailing wind direction. The
wind inflow conditions are prescribed by the supervisory control
and data acquisition (SCADA) nacelle-mounted measurements
of wind speed and nacelle direction. Turbulence intensities were
not measured in the present study due to the wind turbine hard-
ware limitations. Details of the wind condition measurements are
discussed in SI Appendix. Five years of 1-min averaged SCADA
operational data, including power, nacelle direction, and wind
speed, were used to calibrate the proportionality constant of
the presumed Gaussian wake and the wake spreading coeffi-
cient. The latter parameter dictates the wake diameter which is
a function of the streamwise distance following a wind turbine.
This model allows each turbine to have independent values for
the two model parameters, since these parameters are known
to be a function of the atmospheric boundary layer conditions
(46) as well as the number of upwind turbines (47). The model
parameters were determined using analytic gradient descent (SI
Appendix). The resulting calibrated model using the nocturnal
historical baseline data is shown in Fig. 2 for 330◦± 5◦ inflow
at u∞=5−6 m·s−1 and u∞=7−8 m·s−1. The power produc-
tions are normalized by the power of the most upwind turbine.
The second turbine, on average, produces∼30% and 40% of the
upstream turbine’s power in the low and moderate wind speed
cases, respectively. Wake losses are larger for lower wind speeds
due to the higher relative thrust that the turbine imparts upon
the velocity field at low wind speeds.

The model fit for the moderate wind speed has mean absolute
error of 0.02 while the low wind speed fit has mean absolute error
of 0.09 (given as a ratio normalized by the power of the first tur-

BA

Fig. 2. (A and B) Wake model calibration using 5 y of historical SCADA
turbine power data for inflow from 330◦± 5◦ for (A) u∞ = 5−6 m·s−1 and
(B) u∞ = 7−8 m·s−1. Error bars represent 1 SD in the data. Turbine 4 is
a Vestas V80 2.0-MW machine while the rest are Vestas V80 1.8 MW. The
turbine power productions are normalized by the most upwind turbine P1.

bine). The less accurate fit in the low wind speed bin is expected
due to the inherent nonlinearity at the effective cut-in velocity of
5 m·s−1 for the Vestas V80 turbines at the site of interest. Specif-
ically, above cut-in, the turbine generates power and imparts
drag on the fluid, creating a wake region. Below the cut-in, zero
power is produced and no significant wake region exists. Due to
dynamic wake meandering, downstream turbines will fluctuate
between cut-in and shutdown for very low wind speeds and static
models that consider only time-averaged behavior are not able to
capture these dynamics as well (48). This is illustrated in Fig. 2A
where zero power production occurs within 1 SD of the mean.
Since the yaw controller on the Vestas V80 turbines did not allow
for dynamic yaw maneuvers, such dynamic extensions were not
applicable in the modeling framework. Wake model calibrations
for other northwest wind inflow directions and speeds are not
shown for brevity.

Field Experiment Design
While the wind farm in Alberta was designed for high-speed
flow from the southwest, nocturnal low to moderate wind speeds
from the northwest occur during the summer and fall. The
present experiment aimed to optimize the yaw misalignment
angles for these wind speeds from the northwest for which there
are significant wake effects.

The yaw misalignment optimization was run with the cali-
brated model for inflow from 315 ◦ to 355 ◦ for which wake losses
are observed. These angles represent∼8% of the nocturnal oper-
ation of the wind farm with nearly all of the samples occurring
in the summer and fall seasons. The historical data wind rose
is shown in SI Appendix, Fig. S1A. The yaw angle optimization
resulted in ∼20◦ clockwise yaw misalignment with respect to the
incoming wind for each of the first five turbines in the column and
zero misalignment for the turbine that was farthest downwind.
Due to the hardware limitations of the yaw control systems of
the wind turbines, only one set of yaw misalignment angles could
be chosen for the range of northwest inflow. Therefore, the mis-
aligned turbines were persistently offset by 20◦ for all northwest
inflow directions, from 315 ◦ to 355 ◦. While turbulence intensity
measurements were not available at the wind farm site, the noc-
turnal operation typically results in fairly low turbulence intensity
and therefore larger wake losses due to suppressed mixing in the
wakes (11). Details of the yaw misalignment optimization are
given in SI Appendix. Other yaw misalignment angles were not
tested due to experimental limitations of implementation and
to increase the number of unique days of experimentation with
one set of misalignments. The longer experiment duration was
necessary to achieve statistical confidence.

The present control-based optimization strategy was tested
in a full-scale field experiment of the six utility-scale turbines
from October 15 until October 25 of 2018. A photo of the yaw-
misaligned turbines can be seen in Fig. 3A. A top-view sketch of
the optimal yaw angles for reference inflow from the northwest
can be seen in Fig. 3B.

Field Experiment Results
Significant power increases over the baseline were observed for
low to moderate wind speeds from the northwest. The impact of
the wake steering on the mean and SD of the power production
for the northwest inflow conditions is shown in Table 1. Wind
directions and speeds with more than 15 1-min–averaged data
samples are shown.

For low wind speeds of u∞=5−6 m·s−1 and 325◦± 5◦ inflow,
the total power of the six turbines increased from a temporal
average of 390 kW to 570 kW, representing a 47% increase.
Meanwhile, for 330◦± 5◦ inflow at u∞=5−6 m·s−1, the power
increase was 28% (Fig. 3C). The large percent increases in these
cases are due to the low power production at low wind speeds and
the proximity of the wind speeds to the cut-in speed of 5 m·s−1.
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Fig. 3. (A) Photo of the six Vestas V80 turbines at the operational wind
farm in Alberta, Canada. (B) Top view of the optimized yaw misalignment
for the six turbines. The flow originates from the northwest, the inflow con-
dition of interest for the present optimization experiment. Turbines one
through five are misaligned 20◦ clockwise with respect to the incoming
wind. Turbine six is not misaligned. Coordinates are in meters. (C and D)
The power as a function of turbine number is compared for baseline oper-
ation with 5 y of historical SCADA data (blue circles), the experimental
yaw campaign (green triangles), and the model predictions (red diamonds)
based on the calibrations given in Fig. 2. The inflow conditions are shown
for 330◦± 5◦ at (C) u∞ = 5−6 m·s−1 and (D) u∞ = 7−8 m·s−1. Error bars
represent 1 SD in the data.

The significant improvement in these two cases can be attributed
to the deflection of the upstream wakes. Partial wake overlap
occurs when a section of the wind turbine rotor area is in the
wake of an upwind turbine while another section is in unper-
turbed, freestream flow. Such a case occurs for the six turbines
with flow from 325 ◦ to 330 ◦. During the partial wake scenario,
a small yaw misalignment for the upwind turbine can result in
the downstream turbine operating exclusively in freestream con-
ditions. The reduction in the occurrence of partial waking is
beneficial for power generation and significantly reduces turbine
fatigue and failure (49). The model captures the influence of yaw
misalignment in the partial wake scenario as shown in Fig. 1 B
and C, where the wakes of the upstream turbines are deflected

away from downstream turbines. The wakes impact the down-
stream turbines more directly at 330◦ than at 325◦. As a result,
larger wake deflections are required at 330◦ than at 325◦ to steer
the wake away from the downstream turbines. Therefore, the
anticipated power increase is higher for 325◦ where the partial
wake scenario is most prominent.

For the higher wind speed of u∞=7−8 m·s−1 from 330◦± 5◦

the total power increased from 1.86 MW to 2.11 MW, a 13%
increase (Fig. 3D). The percentage increase is less in the higher
wind speed cases as a result of the decreased wake effects at these
speeds.

Flow directly impinging along the alignment of the wind farm
column at 335◦± 5◦ occurred significantly only at wind speeds
between u∞=7−8 m·s−1. For these conditions, the power pro-
duction of the six turbines increased by 7%. Wind farms are
typically sited at locations in which the mean wind speed is
around 8 m·s−1 (10). Therefore, for wind farms with similar
streamwise spacing and direct alignment, the 7% power increase
observed in this wind condition is expected on average.

Wake steering also significantly reduced the variability in the
sum of the six-turbine power production, measured here as a SD
in the time series of 1-min–averaged data (Table 1). The reduc-
tion in the SDs of the sum of power is due to the diminished
wake effects between the turbines. This manifests as a notable
decrease in the percentage of time the turbines are not produc-
ing power (off rate) for all wind conditions. It is worth noting
that all of the wind conditions considered here are above the cut-
in speed of the Vestas V80 turbines and therefore without wake
effects the off rate would be 0% for all wind condition cases. The
high off rates in the baseline control case result from the imping-
ing speed to a given turbine dropping below the cut-in speed. As
a result of the wake steering, the percentage of time in which
the speed decreases below the cut-in value for the downwind
turbines has appreciably dropped.

The low-order model is able to predict the effect of the yawing
action on the trends of power production in the field experiment
based on calibration using only historical data (Fig. 3 C and D).
As expected, the power production of turbine one (i.e., the most
upwind turbine) was reduced due to operation with yaw misalign-
ment. However, the power production of turbines two through
five, and especially the farthest downwind turbine six, increased
significantly. There are discrepancies in the low wind speed case
shown in Fig. 3C as a result of the cut-in speed nonlinearity
and dynamic wake meandering not captured in the model. How-
ever, the qualitative agreement with the model prediction trends
promotes the use of the present model for real-time control of
arbitrary, utility-scale wind farms.

The largest source of error in the present modeling framework
is the functional dependence of power on the yaw misalign-
ment angle. In the present approach, the power production
as a function of yaw was assumed to follow the wind tunnel
experimental result of cos2(γ) (50). While this model works fairly

Table 1. Six utility-scale wind turbine wake steering effects on the mean (∆m), SD(∆s), and off
rate of power production compared with the baseline operation

Experimental results

Wind inflow: Wind inflow: No. of data
Direction, ◦ Speed, m·s−1 ∆m, % ∆s, % Baseline off rate, % Yawed off rate, % points

320 5–6 −13 −53 31 24 65
325 5–6 +47 −20 36 13 52
325 6–7 +24 +2 24 12 25
330 5–6 +28 −14 27 10 17
330 7–8 +13 −72 18 0 22
335 7–8 +7 −73 12 0 22

Conditions of northwest inflow with more than 15 1-min–averaged samples are shown.
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Table 2. Two-sample Kolmogorov–Smirnov statistical test for
the null hypothesis that the baseline historical SCADA power
data and the experimental yaw misalignment power data are
samples of the same distribution

P values

Wind inflow: Wind inflow:
Direction, ◦ Speed, m·s−1 Full 10,000 100,000

320 5–6 0.13 0.14 0.14
325 5–6 2.3 · 10−7 6.1 · 10−4 6.1 · 10−4

325 6–7 0.043 0.32 0.32
330 5–6 0.039 0.27 0.27
330 7–8 6.9 · 10−6 0.015 0.015
335 7–8 8.0 · 10−5 0.03 0.03

The Kolmogorov–Smirnov test is run with the full historical dataset (full)
and with Monte Carlo sampling from the full dataset such that the number
of samples is consistent between the baseline and the experimental cam-
paign. The Monte Carlo statistical method is run for 10,000 and 100,000
random samples to demonstrate convergence.

well in the low wind speed case shown in Fig. 3C, it is inaccurate
for the higher wind speed case shown in Fig. 3D. As a result,
there is likely a functional dependency of the exponent of cosine
on the incoming wind speed as well as the previously reported
dependence on the turbine type (44) and shear and veer in the
atmospheric boundary layer.

The power increase results are statistically significant (P <
0.05) according to a two-sample Kolmogorov–Smirnov test. The
details of the statistical experiments are shown in Materials and
Methods. However, the statistical test does not examine the
dominant causes of uncertainty, which are atmospheric bound-
ary layer inflow conditions including wind speed and direction
and the limited number of unique days of the experimental
yaw campaign. The full dataset can be accessed at https://purl.
stanford.edu/rn821pp7681.

Discussion
We demonstrate a statistically significant utility-scale field exper-
iment of wake steering increasing the power production of a
multiturbine wind farm for wind conditions which exhibit wake
losses. While the impact of wake steering on annual energy pro-
duction is site specific (e.g., below 0.3% at this wind farm), this
experiment serves as a proof of concept for the potential of wake
steering to significantly mitigate wake losses which reduce the
annual energy production of wind farms (13). Wake steering con-
trol also decreased power production intermittency. Since fre-
quency regulation ancillary services are required on the timescale
of minutes (26), the SDs with respect to 1-min–averaged time
series of power production are relevant to energy grid planning.
This demonstrates that wake steering has the potential to reduce
the intermittency of wind energy and thus improve the reliability
of this component of the energy grid. Advances in our understand-
ing of the physics of wind farms, combined with improvements in
modeling, design, and control optimization, will further expand
the value of this renewable energy technology and its ability to
provide low-cost and reliable energy for a sustainable grid.

Achieving these potential power increases in the global wind
farm fleet requires an efficient computational model. The
present analytic model formulation was chosen due to its compu-
tational efficiency, which facilitates its use for real-time control
of utility-scale wind farms. The computational cost of previous
methods scales as O(NxNy), where Nx and Ny are the number of
grid points used in the computational domain, whereas the cost
of the present method scales as O(Nt), where Nt is the number
of turbines. Typically, O(10) grid points are used for each tur-
bine in the wind farm (34), leading to an approximate scaling
of O(100N 2

t ). Therefore, the present method has a computa-

tional reduction of at least two orders of magnitude. This scaling
enables real-time model calibration and wind farm control using
only a standard personal computer. Given that all utility-scale
wind turbines are constructed with yaw controllers, the present
control scheme can be directly implemented into any operational
wind farm, thus immediately increasing the energy outputs from
these sites with no additional cost.

Recent simulations have noted a potential influence of the
direction of yaw misalignment on the power production in a sim-
plified, aligned, two-wind-turbine wake steering scenario (51, 52).
This observation has not been corroborated in all other wake
steering studies and is likely a strong function of the turbine layout
(53). The potential asymmetry in the power production as a func-
tion of the direction of yaw misalignment is likely caused by the
curled, 3D wake (42) and the wind velocity veer and shear. Recent
work suggests that this asymmetry is due to the Coriolis effect (37).
These effects are the subject of ongoing modeling work (36, 43, 54,
55) and were therefore not included in the present framework.

Aside from the effect of yaw misalignment on power produc-
tion observed here, wake steering will also have an impact on
wind turbine unsteady loading and therefore mechanical fatigue.
Theoretical and numerical studies have predicted that yaw mis-
alignment can reduce or increase the mechanical fatigue loading
on wind turbine blades, depending on the direction of yaw mis-
alignment (56). However, the influence of yaw misalignment on
fatigue loading is a function of the specific wind turbine and
control system as recent studies have reported differing results,
depending on the wind turbine of interest (49, 57). Further, yaw
misalignment can reduce the occurrence of partial wake overlap
which is known to significantly increase fatigue loading (58). In
the experiment described here at a wind farm in Alberta, par-
tial wake overlap decreased significantly. While the wind turbine
fatigue loading was not measured in the present field experi-
ment, it is the subject of future work and instrumentation at
this field site. More generally, accurate predictions of the influ-
ence of yaw misalignment on the fatigue loading of all of the
wind turbines in the wind farm will likely be required before the
broad implementation of wake steering as the optimal control
scheme for utility-scale wind farms. This is the subject of ongoing
work through the Department of Energy A2e program through
the use of the National Renewable Energy Laboratory’s FAST
simulation tool (59).

Materials and Methods
Statistical Tests. The statistical significance of the experimental yaw power
optimization results was tested using the two-sample Kolmogorov–Smirnov
test. The Kolmogorov–Smirnov test was selected since the datasets are non-
normal distributions. The null hypothesis is that the sum of the six-turbine
power generations from the baseline historical data and the experimen-
tal yaw measurements are the same distributions. The statistical test is run
for the specific inflow conditions shown in Table 1. There are more than
an order of magnitude more samples from the historical baseline dataset
than for the yaw campaign due to the limited length of the field exper-
iment. As such, the P values are computed using random sampling from
the full distribution such that the baseline dataset has the same number
of data points as the yaw misalignment experiment data. The P values are
then averaged together as a Monte Carlo method. The resulting P val-
ues are shown in Table 2. All results are statistically significant (P< 0.05)
except for inflow from 320◦± 5◦ at a speed of 5–6 m·s−1. The samples
during the experimental yaw misalignment campaign are not strictly inde-
pendent since they may occur during similar atmospheric boundary layer
conditions. The results are similar if smaller wind speed or direction bins are
used to calculate conditional averages. The full dataset can be accessed at
https://purl.stanford.edu/rn821pp7681.

ACKNOWLEDGMENTS. We thank TransAlta Corporation and TransAlta
Renewables for graciously providing historical wind farm operational data
and for performing the yaw misalignment experimental campaign on oper-
ational turbines. M.F.H. is funded through a National Science Foundation
Graduate Research Fellowship under Grant DGE-1656518 and a Stanford
Graduate Fellowship.

Howland et al. PNAS | July 16, 2019 | vol. 116 | no. 29 | 14499

https://purl.stanford.edu/rn821pp7681
https://purl.stanford.edu/rn821pp7681
https://purl.stanford.edu/rn821pp7681


1. Intergovernmental Panel on Climate Change. “Summary for policymakers” in Global
Warming of 1.5◦C. An IPCC Special Report on the Impacts of Global Warming of
1.5◦C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Path-
ways, in the Context of Strengthening the Global Response to the Threat of Climate
Change, Sustainable Development, and Efforts to Eradicate Poverty, V. Masson-
Delmotte et al., Eds. (World Meteorological Organization, Geneva, Switzerland,
2018).

2. UNFCCC, “Adoption of the Paris agreement” (Report No. FCCC/CP/2015/L.9/Rev.1,
2015).

3. J. Rogelj et al., Paris agreement climate proposals need a boost to keep warming well
below 2 C. Nature 534, 631–639 (2016).

4. K. Anderson, G. Peters, The trouble with negative emissions. Science 354, 182–183
(2016).

5. EIA, “Annual Energy Outlook” (AEO2018, 2018).
6. C. L. Archer, M. Z. Jacobson, Evaluation of global wind power. J. Geophys. Res. Atmos.

110, 110.D12 (2005).
7. R. Wiser, M. Bolinger, “2017 wind technologies market report” (Tech. Rep. DOE/EE-

1798, US Department of Energy Office of Energy Efficiency and Renewable Energy,
US Department of Energy Office of Scientific and Technical Information, Oak Ridge,
TN, 2017).

8. L. Vermeer, J. N. Sørensen, A. Crespo, Wind turbine wake aerodynamics. Prog.
Aerospace Sci. 39, 467–510 (2003).

9. M. A. Abdullah, A. Yatim, C. W. Tan, R. Saidur, A review of maximum power point
tracking algorithms for wind energy systems. Renewable Sustainable Energy Rev. 16,
3220–3227 (2012).

10. C. Draxl, A. Clifton, B. M. Hodge, J. McCaa, The wind integration national dataset
(wind) toolkit. Appl. Energy 151, 355–366 (2015).

11. K. S. Hansen, R. J. Barthelmie, L. E. Jensen, A. Sommer, The impact of turbulence
intensity and atmospheric stability on power deficits due to wind turbine wakes at
Horns Rev wind farm. Wind Energy 15, 183–196 (2012).

12. R. J. Stevens, C. Meneveau, Flow structure and turbulence in wind farms. Annu. Rev.
Fluid Mech. 49, 311–339 (2017).

13. R. J. Barthelmie et al., Modelling and measuring flow and wind turbine wakes in large
wind farms offshore. Wind Energy 12, 431–444 (2009).

14. G. Marmidis, S. Lazarou, E. Pyrgioti, Optimal placement of wind turbines in a wind
park using Monte Carlo simulation. Renewable Energy 33, 1455–1460 (2008).

15. J. Meyers, C. Meneveau, Optimal turbine spacing in fully developed wind farm
boundary layers. Wind Energy 15, 305–317 (2012).

16. R. J. Stevens, D. F. Gayme, C. Meneveau, Effects of turbine spacing on the power
output of extended wind-farms. Wind Energy 19, 359–370 (2016).

17. General Electric, “GE announces Haliade-X, the world’s most powerful offshore
wind turbine” (2018). https://www.ge.com/renewableenergy/wind-energy/offshore-
wind/haliade-x-offshore-turbine. Accessed 15 December 2018.

18. R. J. Stevens, B. F. Hobbs, A. Ramos, C. Meneveau, Combining economic and fluid
dynamic models to determine the optimal spacing in very large wind farms. Wind
Energy 20, 465–477 (2017).

19. M. Gaumond et al., “Benchmarking of wind turbine wake models in large
offshore windfarms” in The Science of Making Torque from Wind 2012: 4th Scientific
Conference, E. Seidel, D. Heinemann, M. Kühn, J. Peinke, S. Barth (IOP Publishing,
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Materials and Methods

Field experiment measurements. The wind inflow conditions are prescribed by the SCADA nacelle-mounted measurements of wind speed
and nacelle direction. Wind speed is measured using both cup and sonic anemometers. The historical data wind rose for the most upwind
turbine is shown in Fig. S1(a). The nacelle direction is controlled through a yaw control algorithm based upon the minimization between the
wind turbine nacelle direction and a nacelle-mounted wind vane direction. The wind direction impinging upon the six turbines is specified by
the nacelle direction of the most upstream turbine. The results are similar if the wind direction is prescribed by most downstream turbine which
is not misaligned in the experiment. The wind speed is specified through an average of nearby uncontrolled baseline turbines since the wind
speed measurement on a yawed turbine differs from the historical baseline data due to a change in the turbine axial induction. This change in
axial induction alters the wind speed measurement on the yawed turbines. The mean absolute difference between the wind speed measured on
the most upstream turbine nacelle and neighboring uncontrolled turbines increases by a factor of two when the most upstream turbine is yawed
compared to the historical measurements. The Pearson-type correlation coefficient between the wind speeds measured by the most upstream
turbine in the present study and the nearby turbines in the wind farm is above 0.9 in the historical measurements.

According to the historical measurements from the wind farm site, low-moderate wind speed occurs from the northwest approximately 10%
of the time. Time steps during which wind turbines are curtailed, undergoing maintenance, or otherwise not collecting reliable power data
when the velocity is above the cut-in are removed; these techniques are common in the processing of SCADA data (1). Instances when the
most upstream turbine is below the cut-in power production are also removed since the wind direction measurements are unreliable below the
cut-in speed. The SCADA data contained 546 and 664 one-minute averaged data samples for the low and moderate wind speeds for 330◦ ± 5◦
inflow, respectively. The wind directions measured by the six optimized wind turbines during the experimental campaign are shown in Fig.
S1(b). There are 17 and 22 one-minute averaged data samples for nocturnal 330◦ ± 5◦ inflow at 5− 6 and 7− 8 m s−1 respectively from
the experimental campaign. The details of the dataset can be seen in Table 1. Inflow from 330◦ and 335◦ at 6− 7 m s−1 exhibited power
production gain over the baseline but was not included due to discrepancies among the wind speeds measured at neighboring turbines. The
wind farm land is flat with no nearby complex terrain elements.

The experimental campaign also tested the model for the wind turbine power loss as a function of its yawing action. While actuator disk
theory predicts a power loss of P̂ = P cos3(γ) (2) where P̂ is the yawed power state and P is the baseline power state, experiments have
shown that P̂ = P cos2(γ) may be more appropriate (3, 4). A comparison of the various models applied to the manufacturer provided wind
turbine power curve with the data from the experimental yaw misalignment campaign is shown in Fig. S2.

Wake model. In previous studies, low-order model equations are typically discretized and solved pointwise in a domain with turbine power
computed using numerical quadrature (5, 6). Due to spatial domain discretization, even low-order models previously used require too much
computational effort to facilitate real-time active control (7, 8) due to numerical function evaluations at all grid points. The state space of yaw
control is large and continuous. If we assume a yaw control system is only accurate to one degree and the yawing is constrained between
−30◦ < γ < 30◦ then each turbine has 60 possible states. The number of states for a wind farm with Nt turbines is then 60Nt . For a six
turbine wind farm, the state space has 4.7 · 1010 discrete combinations. As a result, this problem requires efficient power computation and an
efficient yaw optimization solver. Therefore, in the present study, we develop the analytic equations for power at each turbine in an arbitrary
wind farm as a function of the yawing decisions of the upstream turbines.

With the recent discovery that wind turbines in yaw misalignment generate large-scale counter-rotating vortices much like an airfoil in a
high angle of attack (9), a model based upon aerodynamic lifting line theory was developed (10, 11). The wake momentum deficit region is
modeled as a velocity deficit spread along a Gaussian kernel (5, 12). Therefore, the streamwise velocity in the wake of a single turbine, i, is

u(x, y′) = u∞ − δui(x) D2

8σ2
0,i

exp
(
− (y′ − yc,i(x))2

2σ2
0,id

2
w,i(x)

)
, [1]

where streamwise and lateral directions are x and y respectively. The lateral direction in the frame of the upstream turbine is y′. The streamwise
direction x is measured with respect to the upstream turbine i. The wake momentum deficit region, δu(x), is assumed to be a Gaussian function
(5) distributed along the laterally deflected centerline, yc. The proportionality constant of the Gaussian wake is σ0 and the normalized diameter
of the wake is a function of the downstream distance x and is given by dw(x). The diameter of the wake is parameterized by kw, the wake
spreading coefficient. The vertical dimension is neglected in this model since the three dimensional modeling of the curled wake trailing a yaw
misaligned turbine is the subject of on-going research (13) and the two dimensional model provides a lower bound on wake deflection (9, 14).
The streamwise velocity deficit due to turbine i was computed by Shapiro et al. (11) from the linearized, stationary momentum equations with
negligible viscosity and a parameterized turbulent viscosity and is given by

δui(x) = δu0,i

d2
w,i(x)

1
2

[
1 + erf

(
x√

2D/2

)]
. [2]

Since the streamwise coordinate x is measured with respect to the upstream turbine, x ≥ 0. The initial streamwise velocity deficit δu0,i is

prescribed by inviscid actuator disk theory (2), δu0,i = 2aiu∞. The axial induction factor is ai = 1/2
(

1−
√

1− CT,i cos2(γi)
)

where

the turbine thrust as a function of yaw is assumed to follow actuator disk theory (11). The nondimensional turbine thrust is given by CT,i and
is provided by the turbine manufacturer.

In order to generalize Eq. 1 to an arbitrary number of upwind turbines, a wake superposition method must be selected. The wake may be
superposed linearly (15) or according to a deficit of kinetic energy (16, 17). The deficit of kinetic energy method is the so-called sum-of-squares
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wake superposition method

u(x, y) = u∞ −

√√√√ Nf∑
i

∆u2
i , [3]

where ∆ui = u∞ − ui(x, y) and Nf is the number of upwind turbines. When used with the Gaussian wake profile, the peak velocity deficit,
occurring at the centerline, is superposed.

Some previous studies have used linear velocity deficit superposition rather than kinetic energy deficit (16). The following model focuses
on linear wake superposition although it is straightforward to extend to sum-of-squares superposition. This method is concisely

u(x, y) = u∞ −
Nf∑
i

∆ui. [4]

In order to compute power, the velocity must be averaged over the turbine rotor diameter. Using linear superposition, the area averaged
effective velocity at an arbitrary turbine, j, in the wind farm is computed as

ue,j = 1
Aj

∫
Aj

uj(x, y)dA = 1
Aj

∫
Aj

(u∞ −∆uj)dA. [5]

The surface area integration is, in general, perpendicular to the streamwise coordinate, in y and z. In the present two dimensional model, the
integration is strictly in y. Using the momentum conserving superposition results in the effective velocity computed as

ue,j(x) = u∞ −
1
Aj

∫
Aj

Nf∑
i

δui(x)D2

8σ2
0,i

exp
(
− (y′ − yc,i)2

2σ2
i

)
dA, [6]

where σi = σ0,idw,i. The upwind turbines are found automatically through knowledge of dw,i(x) and the turbine diameter and nacelle
centroids. Further, since δui 6= f(y), the effective velocity can be simplified to

ue,j(x) = u∞ −
Nf∑
i

δui(x)D2

8σ2
0,iAj

∫
Aj

exp
(
− (y′ − yc,i)2

2σ2
i

)
dA [7]

which significantly simplifies the gradient computational graph. Following the analytic integration of Eq. 7, the effective area averaged velocity
becomes

ue,j(x) = u∞ −
Nf∑
i

√
2πδui(x)dw,i(x)D

16σ0,i

[
erf
(
yT +D/2− yc,i(x)√

2σ0,idw,i(x)

)
− erf

(
yT −D/2− yc,i(x)√

2σ0,idw,i(x)

)]
. [8]

The downstream turbine lateral center is yT .
The wake centerline yc,i for turbine i is computed as

yc,i =
∫ x

x0,i

−δvi(x′)
u∞

dx′, [9]

where x0,i is the location of the upstream turbine. The lateral velocity, δv(x), is computed similarly to Eq. 2

δvi(x) = δv0,i

d2
w,i(x)

1
2

[
1 + erf

(
x√

2D/2

)]
. [10]

The normalized wake diameter is a function of x and is computed as

dw,i(x) = 1 + kw,i log (1 + exp[2(x/D − 1)]) [11]

where kw,i is the wake spreading coefficient. Due to the invocation of Prandtl’s lifting line model over an elliptical surface (11), the initial
lateral velocity disturbance is uniform across the turbine’s rotor area and is given analytically as

δv0,i = 1
4CT,iu∞ cos2(γi) sin(γi). [12]

Following (3), the coefficient of power then may be computed as

CP,i = 4ηap,i(1− ap,i)2 cosp(γi), [13]

where ap,i = 1
2

(
1−

√
1− CT,i

)
and η is a tuning parameter used to match the manufacturer provided baseline CP look-up table. From

actuator disk theory, p = 3 (2), but recent large eddy simulations have shown p = 1.88 (18) for the NREL 5 MW wind turbine model. In the
present study, we use p = 2, a more conservative estimate than that of (18). This is a fit which bears reasonable agreement to the experimentally
observed trend of CP with respect to γ for a variety of wind turbines (4). The power is then computed as

Pi = 1
2ρAiCp(ap,i, γi)u

3
e,i. [14]
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Model calibration with historical data. In order to utilize the present wake modeling framework to predict optimal yaw angles, the model
parameters kw and σ0 must be computed based on historical data. The model parameters are computed to reduce the power prediction error for
the baseline, unyawed case of the wind farm. Wind turbine SCADA data of nacelle direction and wind speed are used as model inputs. Power
SCADA data is used to calculate the error for a given state computation of the model using mean absolute error: MAE = 1

m

∑m

i=1

∣∣P̂i − Pi∣∣
where Pi is the model predicted power for turbine i and P̂i is the SCADA turbine power. The number of samples is given by m. The MAE is
minimized using analytic gradient descent and therefore, the analytic gradients are derived.

With the MAE error function, the gradient with respect to the predicted power is

∂MAE
∂Pj

= sign(P̂j − Pj), [15]

where j is the index of the turbine downstream of turbine i. Importantly, the derivative of MAE is taken only with respect to the downstream
turbine j to ensure that the correct direction of gradient descent is chosen. The derivative of the global farm MAE is not used since this will
result in a single descent update direction (positive or negative) for all turbines in the wind farm. The derivative of the turbine specific MAE
values are then averaged over the number of historical examples. The derivative of predicted power with respect to ue,j is

∂Pj
∂ue,j

= 3
2ρAjCP,ju

2
e,j . [16]

If the wake is superposed using the sum-of-squares method, then

∂ue,j
∂c

= ∂ue,j
∂∆u

∂∆u
∂c

, [17]

where c is a quantity of interest to be optimized. Therefore,

∂ue,j
∂c

= −

(
Nf∑
k

∆u2
k

)−1/2

∆uj
∂∆uj
∂c

. [18]

If superposition of linear velocity deficits (19) is used rather than sum-of-squares then

∂ue,j
∂c

= −∂∆uj
∂c

. [19]

The velocity deficit ∆uj is a function of dw,i, σi, and σ0,i. Taking the gradient of ∆uj with respect to these three quantities gives

∂∆uj
∂dw,i

= −
√

2πaiDu∞
8d2
w,i(x)σ0,i

(
1 + erf

(
x′√

2D/2

))[
erf

(
y′2 − yc,i√

2σ2
i (x)

)
− erf

(
y′1 − yc,i√

2σ2
i (x)

)]
, [20]

∂∆uj
∂σ0,i

= −
√

2πaiDu∞
8dw,i(x)σ2

0,i

(
1 + erf

(
x′√

2D/2

))[
erf

(
y′2 − yc,i√

2σ2
i (x)

)
− erf

(
y′1 − yc,i√

2σ2
i (x)

)]
, [21]

and

∂∆uj
∂σi

=
√

2πaiDu∞
16d2

w,i(x)σ2
0,i

[
1 + erf

(
x′√

2D/2

)]([
erf

(
y′2 − yc,i√

2σ2
i (x)

)
− erf

(
y′1 − yc,i√

2σ2
i (x)

)]

+
√

2/π
σi(x)

(
(y′1 − yc,i)e−(y′1−yc,i)2/2σ2

i (x) − (y′2 − yc,i)e−(y′2−yc,i)2/2σ2
i (x)
))

. [22]

The two lateral extents of the turbine are given by y′1 = yT −D/2 and y′2 = yT +D/2 and x′ is in the local frame of the upstream coordinate.
Finally, the gradient of σi with respect to σ0,i and kw,i are ∂σi/∂σ0,i = dw,i and ∂σi/∂kw,i = σ0,i log (1 + exp[2(x/D − 1)]). The

gradient of dw,i with respect to kw,i is
∂dw,i/∂kw,i = log (1 + exp[2(x/D − 1)]) [23]

The gradient of error at turbine j with respect to σ0,i of turbine i is therefore

∂MAEj
∂σ0,i

= ∂MAEj
∂Pj

∂Pj
∂ue,j

[
∂ue,j
∂σi

∂σi
∂σ0,i

+ ∂ue,j
∂σ0,i

]
[24]

and with respect to kw,i of turbine i is

∂MAEj
∂kw,i

= ∂MAEj
∂Pj

∂Pj
∂ue,j

[
∂ue,j
∂σi

∂σi
∂kw,i

+ ∂ue,j
∂dw,i

∂dw,i
∂kw,i

]
[25]

Eqs. 24 and 25 are used to efficiently optimize the MAE using gradient descent.
The model coefficients for the model instance used in Fig. 2 are shown in Fig. S3. The coefficients for u∞ = 7-8 m s−1 approximately

asymptote after the second turbine which is consistent with previous studies (17) while the coefficients for u∞ = 5-6 m s−1 do not because of
the cut-in speed nonlinearity and dynamic wake meandering.
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Gradient-based optimization. Gradient descent update can be stated concisely as

ct+1 = ct − α∂f
∂c
, [26]

where α is the learning rate (or step size), t is the optimization step, f is a function to be minimized, and again, c is an independent quantity of
interest. For maximization, the subtraction becomes an addition. However, standard gradient ascent is particularly vulnerable to local extrema.

As a result, the Adam optimization method is used for the gradient update (20). Adam optimization is constructed based on the physical
principle of momentum. The momentum term for an arbitrary function f and parameter c is mt = β1m

t−1 + (1− β1) ∂f
∂c

and the velocity
term is vt = β2v

t−1 + (1− β2)( ∂f
∂c

)2. The parameters β1 and β2 are set to the typical values of 0.9 and 0.999 (20). The model parameter is
then updated as

ct+1 = ct − α mt√
vt
, [27]

Adam optimization is less sensitive to nonlinearities and saddle points in the objective function due to the hysteresis present in the gradient
update.

Power optimization through yaw misalignment. The present optimization utilizes gradient ascent optimization in order to maximize the
total power. The gradient ascent is performed using the Adam optimzer. In order to perform gradient optimization, the derivative of the total
power function must be taken with respect to the optimization parameters. The gradients may be computed discretely. However, this method
is prone to numerical errors and is more computationally expensive. Instead, we may borrow from recent literature in neural networks and
computational graphs to compute the analytic derivative of P with respect to γi. The analytic derivative is based on the analytic form of the
equation, and therefore, for the given system, is exact. We will derive the gradient update through successive application of the chain rule.
First, we can take the derivative of the power with respect to the relevant parameters. The derivative of the total power with respect to the
coefficient of power is

∂Pi
∂CP,i

= 1
2ρAiu

3
e,i, [28]

and with respect to the effective velocity is given by Eq. (16). Then, we can consider the equation for CP,i,

∂CP,i
∂γi

= −8ηap,i(1− ap,i)2 sin(γi) cos(γi), [29]

and
∂CP,i
∂ap,i

= 4η(1− 4ap,i + 3a2
p,i) cos2(γi). [30]

We may further obtain
∂ap,i
∂CT,i

= 1
4
√

1− CT,i
. [31]

These gradients are computed with respect to the current turbine of operation, i.e. the derivatives to this point are all derived with respect
only the to yaw misaligned turbine itself. An example of this situation is a turbine in the last row of a wind farm. The turbines in the last row
will always set γi = 0 to maximize power since the wake deflection which would result from their decision to yaw would not benefit any
downwind turbines. This also manifests in the gradient ascent directly.

Computing the effective velocity at downwind turbines as a function of the yawing decisions of upwind turbines becomes more complex
within a wind farm due to wake superposition. In particular, upstream turbine yawing decisions are not just based upon the maximization of
their local CP,i but also must be based on the centerline of their wakes which affects the power generation at downstream turbines. Consider a
turbine j whose wake impacts a turbine i. Since we are considering a Gaussian wake model in two dimensions, the effective velocity can be
computed analytically by integrating the velocity ui(x, y) Eq. (1) over the turbine line, resulting in

ue,i = u∞
Di

[
Di −

√
2πajD2

i

16dw(x)σ0

(
1 + erf

(
x′√

2D/2

))[
erf

(
y′2 − yc,j√

2σ2(x)

)
− erf

(
y′1 − yc,j√

2σ2(x)

)]]
, [32]

where y′1 and y′2 are the tips of the turbine which define the line integration in the frame of the upstream turbine. Then, the gradient of the
effective velocity may be taken with respect to aj and yc,j . First,

∂ue,i
∂aj

= −
√

2πu∞Di
16dw(x)σ0

(
1 + erf

(
x′√

2D/2

))[
erf

(
y′2 − yc,j√

2σ2(x)

)
− erf

(
y′1 − yc,j√

2σ2(x)

)]
, [33]

and
∂ue,i
∂yc,j

= −u∞Diaj8d2
w(x)σ2

0

(
1 + erf

(
x′√

2D/2

))[
−exp

(
− (y′2 − yc,j)2

2σ2(x)

)
+ exp

(
− (y′1 − yc,j)2

2σ2(x)

)]
. [34]

These calculations can be done for each turbine upstream individually as a result of the linear wake superposition method.
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The gradient axial induction factor aj with respect to the yaw angle can be computed as

∂aj
∂γj

= −CT,j sin(γj) cos(γj)
2
√

1− CT,j cos2(γj)
. [35]

The gradient of the centerline of the wake of the upstream wind turbine j with respect to γj must be computed. This gradient follows as

∂yc,j
∂γj

=
[
cos3(γj)− 2 sin2(γj) cos(γj)

] ∫ x

x0,j

−CT,j
8d2
w(x′)

[
1 + erf

(
x′√

2D/2

)]
dx′. [36]

The gradient of the centerline wake with respect to the upstream turbine’s yaw angle requires numerical integration. Here, we use the
second-order accurate trapezoidal numerical quadrature.

Finally, the total gradient of the power with respect to the yaw angle of a given turbine i is given as

∂Pi
∂γi

= ∂Pi
∂CP,i

∂CP,i
∂γi

+ ∂Pi
∂CP,i

∂CP,i
∂ap,i

∂ap,i
∂CT,i

∂CT,i
∂γi

. [37]

The gradient of the power of a downstream turbine j with respect to the yawing decision of an upstream turbine i is

∂Pj
∂γi

= ∂Pj
∂ue,i

∂ue,i
∂yc,i

∂yc,i
∂γi

+ ∂Pj
∂ue,j

∂ue,j
∂ai

∂ai
∂γi

. [38]

These gradients can be combined and the yaw angle may be updated according to Eq. (26) or Eq. (27).

Gradient Checking. The computed analytic gradient ∂P/∂γ is checked to ensure their accuracy since analytic gradients of complex
computational graphs are prone to human error. This strategy is common in gradient-based machine learning approaches. Gradient checking
involves comparing the analytic gradients to numerical gradients calculated with a finite differencing scheme and a small perturbation in the
yaw angle. Second order accurate centered finite differencing is selected for the gradient calculation and the perturbation is ε = 10−8.

Here, we check the gradients for a model three turbine problem. The turbines are spaced evenly and 8D apart. The turbines are aligned in
the lateral direction. The gradients are checked for the last turbine first since this gradient will only manifest at this turbine itself. The gradients
are checked for −45◦ < γ < 45◦. The gradient for the most downwind turbine is simple and agrees to machine precision with the numerical
gradient. This is shown in Fig. S4(a). The gradient for the most upwind turbine is more complicated as a result of the spatial nonlinearity of the
wake (21). Upstream turbine gradients with respect to yaw will manifest in the power of downstream turbines through the wake centroid yc.
The gradient for the most upwind turbine is shown in Fig. S4(b). The analytic gradient agrees well with the numerical gradient with small
discrepancies at large yaw angles. The discrepancy at large yaw angles is likely due to sharp nonlinearities in the velocity profiles (6).

The gradients are also checked for the model parameters kw and σ0. These gradients are computed for the unyawed operating condition
and are computed for the most upstream turbine in the example problem. The gradients are shown in Fig. S5 and show good agreement with
the centered finite differencing scheme with ε = 10−8.

Northwest inflow optimization for Summerview Wind Farm. Following model calibration to historical baseline data, the model is
optimized through yaw misalignment. Here, we focused on the yaw optimization of the six utility-scale turbines shown in Fig. 3 for inflow from
the northwest, particularly 325◦-335◦. Angle inflow direction changes of 10◦ result in different wake conditions. At 325◦ the downstream
turbines are in partial wakes of the upstream turbines while at 335◦ inflow the turbines are in the full wakes. Due to experimental limitations
of the utility-scale turbines, the yaw misalignment angle could not be changed as a function of time during the experiment. As such, we
aggregated the optimization results for the inflow between 325◦-335◦ to select the optimal yaw angles. The experimental yaw angles were
selected as angles which provided robust power increase for the range of inflow angles specified since field wind conditions are unknown
a priori. This robustness also considered wind speed. Overall, the aggregated optimization resulted in γ = 20◦ clockwise for turbines one
through five and γ = 0◦ for turbine six. Since the optimization is sensitive to wind speed and layout conditions, a control system which
allows for dynamic yaw maneuvers could result in significantly improved wind farm performance. The dynamic model calibration and yaw
optimization algorithm is summarized in Alg. 1. In general, the FieldObservation() algorithm would involve a state estimation technique
such as the Kalman Filter. The power is observed through SCADA data. The wake parameters, kw and σ0, are updated according to the field
observation using gradient descent. The yaw angles are optimized using ForwardProp() which calculates the state of the power generation and
BackProp() which computes the analytic dervatives. The yaw angles are updated with Adam optimization.

In general, gradient-based optimization is subject to local maxima which may inhibit the search for globally optimal solutions. Recent work
in deep neural networks suggest that in high dimensional space, true local extrema are uncommon but saddle points are frequent (22). To
handle saddle points or potential local extrema, the present approach can be straightforwardly extended to include an optimization approach
such as a genetic algorithm to be used in tandem with the analytic gradients. The present yaw optimization of the six utility-scale turbines was
not sensitive to initialization for the inflow angles tested.

To illustrate the use of the present yaw optimization algorithm, we will consider inflow from 330◦ at u∞ = 7.5 m s−1. The model
calibration for this condition is given in Fig. 2(b). The learning rate is α = 10−4. The yaw angles are initialized to zero for all turbines. The
convergence criteria is based on the total power generation. If

|Pt+1 − Pt|
|Pt|

< ε [39]

then the optimization has converged. The convergence criteria is ε = 10−8 in the present study. The optimization results can be seen in Fig.
S6. This six turbine utility-scale optimization takes approximately 1 second on a standard laptop computer.
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Algorithm 1 Maximize Power through Yaw Optimization

1: procedure MAXIMIZEPOWER(kw,0, σ0,0, γ0, α, β1, β2, ε)
2: P ← FieldObservation()
3: kw, σ0 ← UpdateWakeParams(P , kw,0, σ0,0, α, β1, β2, ε)
4: t = 0, m0 = 0, v0 = 0
5: while |Pt − Pt−1| / |Pt−1| > ε do
6: Pt ← ForwardProp(kw, σ0, γ)
7: ∂P/∂γ ← BackProp(Pt, kw, σ0, γ)
8: mt = β1mt−1 + (1− β1)∂P/∂γ
9: vt = β2vt−1 + (1− β2)(∂P/∂γ)2

10: γ = γ + α(mt/
√
vt)

11: t← t+ 1
12: return γ
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Fig. S1. (a) Wind rose for turbine one for the historical SCADA data. (b) Nacelle directions during the experimental yaw campaign for the six controlled turbines. The angles are
given in bins of 10◦ width.
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Fig. S2. Power curve for the yaw misalignment experiment for turbine one. The raw, uncurtailed one-minute averaged data is shown with dots. Averaged data in 0.25 m s−1

bins are shown in red. The errorbars represent one standard deviation in the data and are assumed to be symmetric about the mean. The manufacturer provided power curve
is shown in solid black. The manufacturer provided power curve with models of cos2(γ) and cos3(γ) are shown with dashed and dashed-dotted curves respectively.
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Fig. S3. The model coefficients kw and σ0 for the model calibration using historical SCADA data for (a) u∞ = 5-6 m s−1 and (b) u∞ = 7-8 m s−1 with 330◦ ± 5◦ inflow
direction. The model produces turbine power predictions shown in Fig. 2.
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Fig. S4. Gradient checking for the analytic gradients of modeled power with respect to the yaw angle. The analytic gradients are plotted as a function of the numerical gradients.
A line of unity slope is given by the black line. The gradients are checked for −45◦ < γ < 45◦. The gradients are computed in an example three turbine model problem for (a)
the most downstream turbine and (b) the most upstream turbine.
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Fig. S5. Gradient checking for the analytic gradients of modeled power with respect to the model parameters (a) kw and (b) σ0. The analytic gradients are plotted as a function
of the numerical gradients. A linear fit is given by the black line. The gradients are checked for various conditions of kw and σ0 and for the upstream turbine in the three turbine
model problem.
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Fig. S6. Yaw optimization for the six utility-scale turbines for inflow from 330◦. The inflow velocity is u∞ = 7.5 m s−1. The model calibration is given by Fig. 2(b).
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