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The nonlinear perturbation response of two families of vortices, the Norbury family of
axisymmetric vortex rings and the Pierrehumbert family of two-dimensional vortex
pairs, is considered. Members of both families are subjected to prolate shape
perturbations similar to those previously introduced to Hill’s spherical vortex, and
their response is computed using contour dynamics algorithms. The response of
the entire Norbury family to this class of perturbations is considered, in order to
bridge the gap between past observations of the behaviour of thin-cored members
of the family and that of Hill’s spherical vortex. The behaviour of the Norbury
family is contrasted with the response of the analogous two-dimensional family of
Pierrehumbert vortex pairs. It is found that the Norbury family exhibits a change in
perturbation response as members of the family with progressively thicker cores are
considered. Thin-cored vortices are found to undergo quasi-periodic deformations of
the core shape, but detrain no circulation into their wake. In contrast, thicker-cored
Norbury vortices are found to detrain excess rotational fluid into a trailing vortex
tail. This behaviour is found to be in agreement with previous results for Hill’s
spherical vortex, as well as with observations of pinch-off of experimentally generated
vortex rings at long formation times. In contrast, the detrainment of circulation that
is characteristic of pinch-off is not observed for Pierrehumbert vortex pairs of any
core size. These observations are in agreement with recent studies that contrast the
formation of vortices in two and three dimensions. We hypothesize that transitions in
vortex formation, such as those occurring between wake shedding modes and in vortex
pinch-off more generally, might be understood and possibly predicted based on the
observed perturbation responses of forming vortex rings or dipoles.
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1. Introduction
A variety of biological and engineering flows are characterized by the presence of

axisymmetric vortex rings. Most commonly, these vortex rings are observed in starting
or pulsed axisymmetric jets, where a fluid column is ejected through a circular nozzle
or aperture. As fluid is ejected, boundary layer separation at the aperture leads to
roll-up and the formation of a vortex ring. Gharib, Rambod & Shariff (1998) found
that vortex rings cannot grow indefinitely, as there is a physical limit to their size.
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Beyond this limit, the vortex rings reject additional vorticity, which forms a wake of
Kelvin–Helmholtz-type vortices that trail behind the ring.

Gharib et al. (1998) explained this transition in terms of a variational principle due
to Kelvin and Benjamin (Benjamin 1976; Kelvin 1880b), which states that a vortex
ring is a steady solution to the equations of motion only when it has maximum energy
with respect to rearrangements of the vorticity that preserve the same total impulse.
Subsequently, several models predicting pinch-off have been proposed, including those
of Mohseni & Gharib (1998), Shusser & Gharib (2000), Linden & Turner (2001),
Kaplansky & Rudi (2005) and Gao & Yu (2010). In addition, Krueger & Gharib
(2003) have demonstrated that the pinch-off process has dynamical significance, as the
efficiency of momentum transport in pulsed jets is optimized when the size of the
vortex rings generated by the jet is maximized.

Notably, both the argument of Gharib et al. (1998) and the aforementioned models
make use of a family of vortex rings introduced by Norbury (1973), as a model
for axisymmetric vortex rings. The Norbury family consists of steadily translating
axisymmetric vortex rings with finite core size, ranging from classical thin-cored
vortices to Hill’s spherical vortex. In all members of the family, the vorticity density
(ω/r, where r is the radial coordinate) is constant inside the core. These vortex rings
serve as a low-order model of experimentally generated vortex rings of different
core sizes. Despite its simplicity, the Norbury family of vortex rings has been
successfully employed as a model for axisymmetric vortex rings at different stages
in their development (Gharib et al. 1998; Mohseni & Gharib 1998; Shusser & Gharib
2000; Linden & Turner 2001; Kaplansky & Rudi 2005; Gao & Yu 2010).

That Hill’s spherical vortex and nearly spherical members of the Norbury family
are the solution to a maximization problem on the energy function as outlined by
Benjamin (1976) was shown by Wan (1988). Moffatt & Moore (1978) considered
the linear stability of Hill’s spherical vortex subjected to axisymmetric perturbations,
and found that these decay everywhere except in a region near the rear stagnation
point, where a tail of growing length develops. Building on this analysis, Pozrikidis
(1986) studied the nonlinear instability of Hill’s spherical vortex to axisymmetric shape
perturbations of finite size. When subjected to an axisymmetric prolate perturbation,
Pozrikidis (1986) found that Hill’s vortex returned to a smaller spherical vortex by
detraining rotational fluid into a tail. Gharib et al. (1998) noted that this circulation
shedding is analogous to pinch-off. In contrast, Ye & Chu (1995) investigated the
response of a member of the Norbury family of moderate core thickness to similar
shape perturbations, and found no evidence of tail shedding. However, the nonlinear
response of the remainder of the Norbury family to prolate shape perturbations is
unknown, and the transition from the observations of Ye & Chu (1995) to those of
Pozrikidis (1986) has not been previously characterized.

In two-dimensional flows, a coherent structure similar to the axisymmetric vortex
ring is often observed: the symmetric vortex dipole. Dipolar vortices have been
observed experimentally in flows in which three-dimensional motions have been
suppressed by stratification (van Heijst & Flór 1989), by utilizing a thin soap film
(Couder & Basdevant 1986; Afanasyev 2006), by rotation of the ambient fluid
(Velasco Fuentes & van Heijst 1994; Trieling et al. 2010), or by the imposition of
a magnetic field on a layer of mercury (Nguyen Duc & Sommeria 1998). In these
experiments and in computational studies (van Geffen & van Heijst 1998; Duran-
Matute et al. 2010; Pedrizzetti 2010), thick-cored, nearly symmetry-axis-touching
dipoles were often observed, leading to speculation that the physical constraint on
vortex growth identified by Gharib et al. (1998) for axisymmetric vortex rings does not
extend to two-dimensional vortex pairs. Nitsche (2001) also found a difference in the
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behaviour of axisymmetric vortex rings and vortex dipoles using vortex sheet methods.
The author observed self-similar shedding of circulation into a tail in the roll-up of a
spherical vortex sheet into a vortex ring, but no shedding of circulation in the roll-up
of a cylindrical vortex sheet into a vortex pair.

Recently, Afanasyev (2006) and Pedrizzetti (2010) have considered the formation
of two-dimensional dipoles by the ejection of fluid from thin slits. Unlike in the
axisymmetric case, both studies found that vortex pairs continue to accept vorticity
after ejection times well beyond those observed for circular vortex rings. Afanasyev
(2006) also observed that, throughout their formation, vortex dipoles formed by the
ejection of fluid from thin slits could be modelled by different members of a
family of steadily translating vortex pairs described by Pierrehumbert (1980). These
vortices form a family of constant-vorticity vortex pairs of finite core size, ranging
from point vortex dipoles to the symmetry-axis-touching limit. Although the dipoles
could be more realistically modelled by the more complex vorticity distributions
proposed by Kizner & Khvoles (2004) and Khvoles, Berson & Kizner (2005), the
Pierrehumbert family is of interest because of its simplicity, and because it serves as a
two-dimensional analogue to the Norbury family of vortex rings.

In this study, we investigated the nonlinear perturbation response of the members
of the families of vortices introduced by Norbury (1973) and Pierrehumbert (1980) to
prolate shape perturbations similar to those considered by Pozrikidis (1986). The class
of prolate perturbations considered was similar to that described in Pozrikidis (1986),
yet differed slightly in its mathematical formulation due to geometrical constraints
outlined in § 2.2. These perturbations are not of the circulation- and impulse-
preserving type described by Benjamin (1976). However, they are of interest because
the perturbations experienced by forming vortex rings and dipoles in an experimental
setting are also not of the type described by Benjamin (1976). The response of
the entire Norbury family to this type of perturbations was considered, in order to
bridge the gap between the observations of Ye & Chu (1995) for thin-cored rings and
those of Pozrikidis (1986) for Hill’s spherical vortex. In particular, we searched for a
change in the perturbation response as we considered vortex rings of increasing core
thickness. Finally, we considered the difference in the responses of the Norbury and
Pierrehumbert families, to ascertain whether they reflect the differences observed in the
formation of vortices in axisymmetric and two-dimensional experiments.

Contour dynamics methods (Zabusky, Hughes & Roberts 1979; Shariff, Leonard &
Ferziger 2008) were employed to compute the nonlinear evolution of members of
the Norbury and Pierrehumbert families subject to prolate shape perturbations. We
identified a change in the perturbation response of vortex rings as we considered
members of the Norbury family with progressively thicker cores, and this change
was found to be analogous to the onset of pinch-off in experimentally generated
vortex rings. Furthermore, we found no such change in response when considering
members of the Pierrehumbert family of increasing core size. This difference in
behaviour between the two families is akin to the absence of a critical time scale
in two-dimensional vortex dipole formation. We hypothesize that these findings on the
perturbation response of low-order vortex models can be used to study and possibly
predict pinch-off in real flows with more complex vorticity distributions.

The paper is organized as follows. In § 2 we introduce the mathematical formulation
of the two vortex families, as well as the perturbation method and the contour
dynamics procedures employed. This numerical method is employed in §§ 3 and
4 to examine the nonlinear evolution of perturbed members of the Norbury and
Pierrehumbert families, respectively. Finally, concluding remarks are presented in § 5.
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FIGURE 1. The Norbury (a) and Pierrehumbert (b) families of vortices. Core shapes for
various values of α ranging from 0.2 to

√
2 (Norbury) and 0.1 to 1.7 (Pierrehumbert).

2. Mathematical formulation and numerical method
2.1. The Norbury and Pierrehumbert families of solutions

Norbury (1973) introduced a family of steadily translating solutions of the
axisymmetric Euler equations, in the form of vortex rings with core boundary ∂A
that satisfy:

ω =
{
Ωr inside ∂A
0 outside ∂A

(2.1)

where Ω is a constant. He classified these rings by the parameter α =√A/πR2, where
A is the core cross-sectional area and R is the ring radius (defined as the radial
distance to the centre of the core). The parameter α is the ratio of the mean core
radius to the ring radius, and it describes a family ranging from thin-cored vortex rings
as α tends to zero, to Hill’s spherical vortex for α =√2. In figure 1(a), we present the
calculated core boundary for Norbury vortices with various values of α, ranging from
0.2 to

√
2.

Similarly, Pierrehumbert (1980) found a steadily translating solution to the two-
dimensional Euler equations, in the form of symmetric vortex pairs with boundary
∂A1,2 that satisfy:

ω =


Ω inside ∂A1

−Ω inside ∂A2

0 elsewhere.
(2.2)

Following Norbury (1973), the resulting family can also be parameterized by
α =√A/πR2, where in this case R is defined as the distance from the symmetry
axis to the centre of one of the symmetric vortices. The Pierrehumbert family spans
the range from point-like vortices as α→ 0, to symmetry-axis-touching vortex pairs.
Figure 1(b) shows the calculated core boundaries ∂A1,2 of Pierrehumbert pairs for
values of α ranging from 0.1 to 1.7.
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FIGURE 2. Perturbations and coordinates defined in the text. Hill’s spherical vortex and a
Norbury vortex with α = 0.6 are depicted by the solid lines. The dashed lines represent a
perturbation of ε = −0.1 to Hill’s spherical vortex, of the type studied by Pozrikidis (1986),
as well as a perturbation to the Norbury vortex of δ = −0.1 as defined in (2.5). The vortices
propagate from left to right.

The shapes of the members of the Norbury family were determined using the
numerical method outlined in Norbury (1973), which required solving the integral
equation for the streamfunction using a modified Newton–Raphson method. Similarly,
the shapes of the members of the Pierrehumbert family were determined by solving
the corresponding integral equation for the streamfunction using the relaxation method
described in Pierrehumbert (1980). Note that the symmetry-axis-touching solution is
not depicted in figure 1(b). Pierrehumbert (1980) found an axis-touching solution
which included a cusp at the symmetry axis. Shortly thereafter, Saffman & Tanveer
(1982) demonstrated that the axis-touching solution is not unique, and presented an
alternative solution with no cusp. However, whether this solution is the limiting case
for the Pierrehumbert family remains an open question (Saffman & Szeto 1980). In
this study, we have excluded the axis-touching case from the analysis for simplicity.

2.2. Shape perturbations
Pozrikidis (1986) studied the response of a limiting member of the Norbury family,
namely a Hill’s spherical vortex of radius 2R, to prolate and oblate shape perturbations.
He introduced the spheroidal perturbations by expressing the boundary of the vortex in
the form:

ρ = 2Rγ
(

1+ ε
4
(1+ 3 cos 2ζ )

)
(2.3)

where ρ and ζ are, respectively, the vortex radius and polar angle defined in figure 2.
The spheroidal perturbations were achieved by introducing a perturbed second-order
Fourier mode, which was scaled by a fraction of the unperturbed vortex radius,
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(3ε/2)R, to the expression for the vortex core boundary. The sign of the parameter
ε indicates the direction of the deviation from the spherical shape, with a positive
value corresponding to an oblate perturbation and a negative value corresponding
to a prolate perturbation. The factor γ (ε) was introduced to preserve the original
vortex core circulation, implying that the perturbations constitute rearrangements of the
vorticity density.

In the formulation of Pozrikidis (1986), the vortex radius and polar angle were
measured from the centre of the spherical vortex, which is on the symmetry axis of
the flow. In the more general case of the Norbury and Pierrehumbert families, however,
such a formulation is not possible, as the vortex cores are not symmetry-axis-touching
in general. As a result, the core boundary for each member of the Norbury and
Pierrehumbert families is defined here in polar coordinates measured from the centre
of the core. In this coordinate system, the core boundary ∂A can be expressed in the
form of a Fourier cosine polynomial:

σ = f (η, α)=
N∑

j=0

an(α) cos jη (2.4)

where N was chosen to be 30, and the quantities σ and η (defined in figure 2)
are the local core radius and the polar angle measured from the centre of the core,
respectively. In this formulation, perturbations to the core boundary similar to those
first introduced to circular vortex patches by Kelvin (1880a) can be readily introduced.
Following Pozrikidis (1986), we introduced shape perturbations to ∂A by adding a
fraction of the mean core radius (δαR) to the second-order mode:

σ = f (η, α)= γ
N∑

j=0

a′n(α) cos jη, (2.5)

a′2 = a2 + δαR, (2.6)
a′j = aj for j 6= 2; (2.7)

δ expresses the deviation from the unperturbed shape, and it takes positive values
for oblate perturbations and negative values for prolate perturbations. For consistency
with the previous studies by Pozrikidis (1986) and Ye & Chu (1995), the factor
γ (α, δ) was introduced in order to preserve the unperturbed core circulation. For each
member of the family and perturbation size δ analytical expressions for the circulation
of the perturbed and unperturbed vortices were obtained by integrating the vorticity
over the regions described by (2.4) and (2.5)–(2.7). To meet the requirement that the
circulation remain unchanged, these two expressions were equated and the value of the
multiplicative constant γ (α, δ) was determined by solving the resultant cubic equation.

Like the perturbations introduced by Pozrikidis (1986), these perturbations constitute
rearrangements of the unperturbed vorticity. However, both types of perturbations
differ from those described by Benjamin (1976) in that the perturbed vortices do not
preserve the unperturbed vortex impulse. These perturbations are of interest because
the perturbations encountered by vortex rings and dipoles in an experimental setting
are also not of the impulse- and circulation-preserving type described by Benjamin
(1976). Furthermore, the fact that, in his study of Hill’s vortex, Pozrikidis (1986)
reported a detrainment of circulation analogous to pinch-off utilizing these types of
perturbations suggests that they are suited for the study of an analogue to pinch-off in
the Norbury and Pierrehumbert families.
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The perturbations described in (2.5)–(2.7) differ from those described in (2.3), in
that Pozrikidis perturbed only the shape of the outer boundary of the vortex core
(a semi-circle of radius 2R) while scaling the portion of the boundary nearest the
symmetry axis (for Hill’s spherical vortex, a straight line at the symmetry axis), in
order to preserve the continuity of the core boundary. In contrast, our formulation
results in a perturbation being introduced to the entire core boundary. As a result, for
Hill’s spherical vortex, our perturbation is not equivalent to the type of perturbations
considered by Pozrikidis (1986). Hence, the perturbation scheme described in (2.3)
was employed in validating our implementation of the numerical method described
in the following section against the results of Pozrikidis (1986) (§ 2.5). Subsequently,
however, the perturbations described in (2.5)–(2.7) were applied in order to investigate
the nonlinear perturbation response of the Norbury and Pierrehumbert families.

2.3. Contour dynamics formulation
The evolution of the perturbed vortex cores was computed using contour dynamics
methods. The original two-dimensional contour dynamics solution is due to Zabusky
et al. (1979); however, we employed an alternative formulation from Pullin (1991).
The velocity induced by one of the symmetric vortex patches in a Pierrehumbert pair
at a point z= x+ iy in the complex plane was computed using:

ux + iuy =−Ω4π
∮
∂A

z− z′

z̄− z̄′
dz′. (2.8)

Shariff et al. (2008) extended the contour dynamics method to the case of
axisymmetric vortex rings with a linear vorticity distribution in the radial direction,
such as the Norbury family. In this case, the velocity induced by a compact region of
vorticity A at a point x is given by:

u(x)=Ω
∮
∂A
[(x− x′)G(s′) cos θ ′ − rH(s′) sin θ ′] x̂+ r′H(s′) cos θ ′r̂ ds′, (2.9)

G(s′)= r′

π
√

A+ B
K(k), (2.10)

H(s′)= 1
2πr

(
A√

A+ B
K(k)− E(k)

√
A+ B

)
, (2.11)

k =
√

2B

A+ B
, (2.12)

A= (x− x′)2+r2 + r′2, B= 2rr′, (2.13)

where θ(t, α) is the angle of the outward-pointing normal relative to the symmetry
axis, and K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively.

2.4. Numerical method
The contour dynamics formulation reduces the evolution problem to tracking the
motion of a collection of marker points on the core boundary by numerical integration
of (2.8) or (2.9). Contour integration was performed by discretizing the boundary
using linear segments, and evaluating the contribution from segments not adjacent to
the field point using Gaussian quadrature. The singularities in the evolution equations
were dealt with by explicit evaluation in the two-dimensional case, and using the
method outlined by Shariff et al. (2008) in the axisymmetric case.
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The solution was marched forward in time using a fourth-order Runge–Kutta
scheme. At each time step, additional marker points were inserted where the linear
segments stretched beyond 0.016R, and removed where segments shrunk below 0.004R
(Shariff et al. 2008). Following Shariff et al. (2008), the time step was chosen to
satisfy 1T = 0.05/Ω0, where Ω0 is the vorticity at the centre of the vortex ring
core in the axisymmetric case (Ω0 = ΩR), or the strength of the positively signed
vortex patch in the two-dimensional case. The flow invariants (circulation, impulse,
and energy) were monitored and their change was kept below 0.01 % over one eddy
turnover period for the impulse and circulation, and 0.02 % over the same period for
the energy.

2.5. Verification
In order to validate our implementation of the numerical algorithms described in the
preceding section, we began by considering the response of Hill’s spherical vortex
to spheroidal shape perturbations of the type investigated by Pozrikidis (1986) and
described in (2.3). Figure 3 illustrates the response of Hill’s spherical vortex to a
small-amplitude prolate perturbation with ε = −0.05. The perturbed vortex is seen
to detrain rotational fluid into a vortex tail (figure 3c), which experiences continual
elongation (figure 3d) and tends to form an independent low-circulation entity which
trails behind the ring (figure 3e). As noted by Gharib et al. (1998), the shedding of
rotational fluid into a vortex tail is akin to the pinch-off phenomenon observed in
experimentally generated vortex rings.

The results presented in figure 3 agree qualitatively with the results of Pozrikidis
(1986) for a spherical vortex subjected to the same perturbation, and computed
using a different contour dynamics formulation and numerical scheme (cf. figure 2
in Pozrikidis 1986). In figure 4(a) we present the deviation of the non-dimensional
vorticity centroid location from its unperturbed equivalent (x∗c = (Ut − xc)/R, defined
in Pozrikidis 1986) as a function of non-dimensional time t∗ = Ut/R, where U is the
translational speed of the unperturbed spherical vortex. The lines indicate the present
results for vortices subjected to perturbations of ε = −0.05, ε = −0.15, and ε = −0.3,
and the symbols indicate the results of Pozrikidis (1986) for the same perturbations.
Similarly, figure 4(b) shows the present measurements of the time evolution of the
vortex speed (U∗c = dx∗c/ dt∗) for the same three perturbation sizes, as well as those of
Pozrikidis (1986). In both figures 4(a) and 4(b), the agreement with Pozrikidis (1986)
is found to be excellent.

3. Response of the Norbury family of vortex rings
Having validated our implementation of the numerical method described in § 2.4,

we considered the response of the remaining members of the Norbury family to
shape perturbations of the type described in (2.5)–(2.7). Pozrikidis (1986) reported
detrainment of circulation into a vortex tail only for prolate shape perturbations, a
phenomenon of interest because it is analogous to pinch-off. Therefore, we limited
our study to the response of the remainder of the family to prolate perturbations, with
the goal of characterizing the response of the entire Norbury family and investigating
the extent of the shedding behaviour. We simulated the evolution of members of the
Norbury family with α ranging from 0.2 to 1.2, subject to prolate perturbations with
δ =−0.01, δ =−0.02 and δ =−0.05.

Figures 5 to 7 show the evolution of different Norbury vortices subjected to a
perturbation of 5 % of the mean core radius (δ = −0.05). Thin-cored members of
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FIGURE 3. Evolution of Hill’s spherical vortex subject to a Pozrikidis perturbation with
ε =−0.05 at: (a) t∗ = 0; (b) t∗ = 2.1; (c) t∗ = 4.0; (d) t∗ = 7.4; (e) t∗ = 12.8.

the family (α < 0.7) were found to propagate along the axial direction whilst their
vortex cores underwent a quasi-periodic deformation. Eventually, the formation of
small mounds on the core boundary led to the development of thin filaments, which
wrapped around the vortex core. The filamentation of the vortex is a common feature
in vortex dynamics, and it is observed even in linearly stable configurations (Deem
& Zabusky 1978; Dritschel 1988a,b; Saffman 1992; Crowdy & Surana 2007). Thus,
Pozrikidis (1986) and Ye & Chu (1995) remark that the appearance of thin filaments
is of negligible importance to the dynamics of the perturbed vortex. Figure 5 depicts
the evolution of a Norbury vortex with α = 0.5 subject to a perturbation of δ =−0.05.
Initially, the vortex core was found to undergo a quasi-periodic shape deformation
(figure 5a–c). The small deformation which was initially seen to propagate along the
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ε = −0.15; N, ε = −0.3. The lines show our results for the same perturbations: —,
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contour (figure 5b,c), eventually sharpened into a corner (figure 5d) and developed
into a thin filament by t∗ = Ut/R= 6.75 (figure 5e).

For members of the Norbury family with increasing core thickness, the core cross-
section increasingly resembled a semi-circle, and the curvature of the portion of the
boundary closest to the symmetry axis approached zero. The perturbation scheme
outlined in (2.5)–(2.7) therefore resulted in a perturbed vortex shape that was locally
concave (see figure 2). As these vortices evolved, the region of concavity propagated
along the contour, due to the motion of the rotational fluid within. Once the region
of concavity reached the corner near the front of the vortex, it led to the formation
of a small mound on the contour, which rapidly developed into a vortex filament.
The filamentation of a sufficiently perturbed vortex has been observed consistently in
previous studies (Deem & Zabusky 1978; Dritschel 1988a,b; Saffman 1992; Crowdy
& Surana 2007), and as such the emission of a filament by these perturbed Norbury
vortices is to be expected. What is particular to these vortices is the development
of the filament consistently at the location of the region of initial concavity, by the
mechanism described above.
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FIGURE 5. Evolution of a Norbury vortex with α = 0.5 subject to a prolate perturbation of
δ =−0.05 at: (a) t∗ = 0; (b) t∗ = 1.5; (c) t∗ = 3.5; (d) t∗ = 5; (e) t∗ = 6.75.

Figure 6 depicts the behaviour typical of Norbury vortices with 0.7 < α < 0.95,
when subjected to a perturbation of δ = −0.05. In figure 6(a), a perturbed Norbury
vortex with α = 0.9 exhibits a region of local concavity on the portion of its boundary
nearest the symmetry axis of the ring. A small mound was seen to develop as the
region of concavity reached the front of the vortex, which by t∗ = 2.5 had developed
into a sharp spike (figure 6b). At later times, this spike was seen to develop into a thin
filament which wrapped around the vortex core (figure 6c–e). The filament increased
in length as the simulation progressed; however no detrainment of circulation into a
trailing vortex tail was observed. These results are in good qualitative agreement with
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FIGURE 6. Evolution of a Norbury vortex with α = 0.9 subject to a prolate perturbation of
δ =−0.05 at: (a) t∗ = 0; (b) t∗ = 2.5; (c) t∗ = 4.5; (d) t∗ = 6; (e) t∗ = 8.5.

those of Ye & Chu (1995), who considered the unsteady evolution of a Norbury vortex
with α = 0.8, subject to a perturbation of δ =−0.15.

However, for thicker-cored members of the family subject to perturbations of the
same size, a change in response was observed. For Norbury vortices with α > 0.95,
the introduction of a prolate perturbation with δ = −0.05 resulted in the detrainment
of rotational fluid into a vortex tail which lingered behind the vortex ring. Figure 7
shows the evolution of a Norbury vortex with α = 1.2 subject to a perturbation of
this magnitude. Initially, excess rotational fluid from the outer regions of the core
was convected towards the rear of the vortex (figure 7b). Figure 7(c–e) depicts
the elongation of this region of accumulated vorticity, under the influence of the
high-strain region near the rear stagnation point, into a long tail which lingered behind
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FIGURE 7. Evolution of a Norbury vortex with α = 1.2 subject to a prolate perturbation of
δ =−0.05 at: (a) t∗ = 0; (b) t∗ = 2; (c) t∗ = 4; (d) t∗ = 7; (e) t∗ = 11.7.

the vortex ring and formed an independent low-circulation entity. These observations
are consistent with the results of Pozrikidis (1986) for the evolution of Hill’s spherical
vortex under similar shape perturbations, as well as with the observations of Gharib
et al. (1998) for experimentally generated vortex rings above a formation time of
T∗ = 4.

In comparing the shedding of a vortex tail by a perturbed Hill’s vortex and the
phenomenon of pinch-off, Gharib et al. (1998) found that the processes are analogous,
since both occur when patches of rotational fluid at the outer regions of the core are
no longer contained within the region of fluid translating with the vortex ring and
are hence convected to the rear of the vortex. In doing so, the excess rotational fluid
enters the high-strain region near the rear stagnation point and is elongated under
the influence of the stagnation-point flow to form a vortex tail. In nearly spherical
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FIGURE 8. Contour length of the tail or filament after one eddy turnover (expressed as
a percentage of the initial contour length) for members of the Norbury family subject to
perturbations of different magnitudes: N, δ =−0.01; �, δ =−0.02; •, δ =−0.05.

members of the Norbury family, the boundary of the vortex core lies close to the
stagnation streamline. Consequently, a large enough shape perturbation was found to
lead to the presence of excess rotational fluid in the region where fluid particles were
being swept past the ring. The excess vorticity was hence convected to the rear of the
vortex, where the proximity of the rear stagnation point resulted in its detrainment into
a tail. In contrast, for thin-cored members of the Norbury family, the excess vorticity
was found to revolve around the vortex core and eventually cause filamentation, but it
was not detrained due to the remoteness of the rear stagnation point.

A simple metric for comparing the response of the different members of the family
is the contour length of the vortex tail or filament after one eddy turnover (1L),
expressed as a percentage of the initial contour length. In figure 8 we present the
contour length (1L) as a function of the parameter α for three different perturbation
sizes: δ = −0.05, δ = −0.02, and δ = −0.01. The results for δ = −0.05 form a curve
with three distinct sections, labelled I, II and III in figure 8. For small values of α,
the change in the contour length is negligible, since these thin-cored rings were found
to undergo quasi-periodic deformations for several eddy turnovers before thin filaments
began to develop (region I). For values of α in the 0.7–0.95 range, 1L increases with
increasing core thickness (region II). This region corresponds to the members of the
family for which a perturbation of this magnitude results in an initial core shape which
exhibits regions of local concavity. For these vortices, thin filaments were found to
develop immediately, and result in a finite 1L after one eddy turnover.

The most salient feature of the curve, however, is the sharp increase in contour
length when the core thickness parameter is increased past α = 0.95 (region III). This
discontinuity coincides with the first instance of tail shedding in the family, and is
indicative of a change in the response of the Norbury family to perturbations of
this size. The sharp increase in 1L is also evident in the results for δ = −0.02
and δ =−0.01, shown in figure 8, and it was also found to coincide with the onset of
trailing vortex tail formation for perturbations of these sizes. Notably, the value of α
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FIGURE 9. Kinetic energy (Ē) versus circulation (Γ̄ ) for Norbury vortices subject to a
perturbation of δ = −0.05. The solid line shows the Γ̄ –Ē curve for the unperturbed Norbury
family. The filled dots represent the initial circulation and energy of the perturbed vortices.
The crosses represent the values that the perturbed vortices asymptote to after contour surgery.
The same quantities are shown on the inset, which focuses on the thick-cored members of the
family.

at which the detrainment of circulation into a tail was first observed appeared to be
dependent on the perturbation size.

In the preceding figures, contour surgery (Dritschel 1988a) was not applied, and
the filaments and vortex tails were allowed to grow, in order to observe the initial
development of the instability. By excizing the vortex filaments, however, we observed
the development of the perturbed vortices into nearly steady vortex rings whose
asymptotic shape was another member of the Norbury family. Figure 9 shows the
non-dimensional kinetic energy (Ē = E/(ρΩ2R7)) as a function of the non-dimensional
circulation (Γ̄ = Γ/(ΩR3)), for steadily translating and perturbed members of the
Norbury family. The solid line depicts the Γ̄ –Ē curve for the unperturbed members of
the Norbury family, while the black dots represent the initial circulation and energy
of the perturbed vortices (δ = −0.05), and the crosses represent the asymptotic states.
Since the perturbations are circulation-preserving, the perturbed vortices are shifted
downwards from the unperturbed curve by an amount 1Ē(α), which is greater for
thicker-cored members of the family. The perturbed vortices in regions I and II were
found to lose small amounts of both energy and circulation through filamentation,
as their shape slowly approached a nearly steady state with a slightly smaller mean
core radius than they originally possessed. In contrast, in detraining circulation into
a vortex tail, the vortices in region III rapidly shed circulation and a comparatively
small amount of kinetic energy. This resulted in a near-horizontal shift in the Γ̄ –Ē
curve, as shown in figure 9. After the initial detrainment, these vortices continued to
approach a steady state by successively losing small amounts of circulation and energy
by filamentation, much like the vortices in regions I and II.

The nonlinear response of the Norbury family to arbitrary shape perturbations
intended to resemble those encountered by experimentally generated vortex rings (such
as adding a ‘tail’ of vorticity to the rear of a Norbury vortex) was also considered.
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For these perturbations, the results were qualitatively similar to those reported above
for prolate shape perturbations, with thick-cored members of the family exhibiting
detrainment of circulation, and thinner-cored members displaying only filamentation.
However, these arbitrary shape perturbations proved difficult to quantify due to the
absence of conserved quantities, and thus an accurate comparison between different
members of the Norbury family and across families was not possible. As a result, the
aforementioned prolate shape perturbations were selected for this study.

4. Response of the Pierrehumbert family of vortex pairs
Unlike that of the Norbury family, the stability of the Pierrehumbert family has

been the subject of numerous contour dynamics studies. Dritschel (1995) examined
the linear stability of the family of dipoles, and used contour dynamics to find the
nonlinear stability bounds for asymmetric perturbations. Recently, Makarov & Kizner
(2011) used contour dynamics methods to show that all members of the Pierrehumbert
family are stable with respect to symmetric perturbations. However, the nonlinear
response of this family to prolate perturbations of the type described in § 2 has not
been previously reported. Since a comparison between the perturbation responses of
the two families is instructive, we considered the response of several members of the
Pierrehumbert family to perturbations of the same kind and size as those introduced to
the Norbury family.

Given the recent results of Makarov & Kizner (2011) it is unsurprising that, in the
case of the Pierrehumbert family, we found no evidence of detrainment of rotational
fluid into a trailing vortex tail, even when thick-cored members of the family were
subjected to the largest of the perturbations considered (δ = −0.05). Figure 10 depicts
the evolution of a Pierrehumbert vortex pair with α = 1.2 under a perturbation of
δ = −0.05. The cores of the vortices in this pair are quite thick, yet the pair’s
behaviour resembled that of the thin-cored Norbury vortex depicted in figure 5. The
vortex cores were observed to undergo quasi-periodic shape deformations, and thin
filaments eventually began to form where the perturbed cores were locally concave.

Figure 11 shows a plot of the excess energy as a function of circulation for the
unperturbed Pierrehumbert family (solid line), and for the initial and asymptotic states
of the members of this family subject to shape perturbations with δ = −0.05 (filled
circles and crosses, respectively). It is interesting to note that, in the case of the
Pierrehumbert family, symmetric perturbations of the same type and size as those
introduced to the Norbury family result in very small changes in the excess energy
of the dipoles. Whereas for the Norbury family, perturbations with δ = −0.05 resulted
in decreases in the kinetic energy of the perturbed vortex of up to 4.5 %, in this
case the change was found to be less than 0.3 %. Furthermore, it was found that
producing percentage decreases in the energy of the order of those observed for
the Norbury family required introducing perturbations so extreme that the perturbed
vortices resembled figure-eights. This robustness of the energy to shape perturbations
leads to the observed absence of tail shedding.

5. Conclusions
The nonlinear response of the Norbury family of axisymmetric vortex rings to

prolate shape perturbations has been considered. Our contour dynamics computations
suggest that, for prolate shape perturbations, there is a dynamical change in the
perturbation response as we traverse the Norbury family from thin-cored members
to thicker-cored vortex rings, which is analogous to the onset of pinch-off in
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FIGURE 10. Evolution of a Pierrehumbert vortex with α = 1.2 subject to a prolate
perturbation of δ =−0.05 at: (a) t∗ = 0; (b) t∗ = 2.5; (c) t∗ = 5; (d) t∗ = 7.5; (e) t∗ = 10.

experimentally generated vortex rings. Thin-cored vortex rings were found to undergo
quasi-periodic shape deformations, and to eventually develop thin filaments which are
largely dynamically unimportant. In contrast, in thick-cored vortex rings we observed
the transport of excess rotational fluid from the outer boundaries of the core to the
rear of the vortex, which led to the development of a trailing vortex tail and the
detrainment of circulation into a separate trailing entity.

While the behaviour of Hill’s spherical vortex and of one thin-cored member of
the family under similar conditions has been previously reported, the present results
illustrate the behaviour of the entire family in a manner consistent with the results
of Pozrikidis (1986) and Ye & Chu (1995) for these two special cases. Furthermore,
the change in response observed as we traversed the Norbury family is consistent
with experimental observations of the formation of circular vortex rings. Thick-cored
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FIGURE 11. Excess kinetic energy (Ē = E/(ρΩ2R4)) versus circulation (Γ̄ = Γ/(ΩR2)) for
Pierrehumbert vortices subject to a perturbation of δ = −0.05. The solid line shows the Γ̄ –Ē
curve for the unperturbed Pierrehumbert family. The filled dots represent the initial circulation
and energy of the perturbed vortices. The crosses represent the values that the perturbed
vortices asymptote to after contour surgery.

vortex rings have been shown to detrain excess vorticity into a trailing jet in numerous
experiments (Gharib et al. 1998; Dabiri & Gharib 2004; Krueger, Dabiri & Gharib
2006; Pawlak et al. 2007). As Gharib et al. (1998) remark, this process is analogous
to the detrainment of circulation into a tail by thick-cored members of the Norbury
family observed in this study.

In contrast, we found no evidence of detrainment of circulation or tail shedding
for members of the Pierrehumbert family of all core sizes subject to equivalent
perturbations. This suggests a difference in the perturbation response of the two-
dimensional family compared to the axisymmetric Norbury family, which is attributed
to the insensitivity of the kinetic energy of the Pierrehumbert dipoles to shape
perturbations of the type considered (figure 11). This difference in response is of
interest because it mirrors the observed differences in the vortex formation processes
in the two-dimensional and axisymmetric configurations. Recent studies by Nitsche
(2001), Afanasyev (2006) and Pedrizzetti (2010) suggest that the limiting time scale
for axisymmetric vortex ring formation does not apply to the formation of two-
dimensional vortex dipoles. In the light of our findings for the Norbury family, the
absence of tail shedding for any members of the Pierrehumbert family is in good
agreement with these studies.

The present results show that only instantaneous shape perturbations to low-order
vortex patch models are required to produce a change in response between thin-cored
vortex rings and thicker-cored rings which is consistent with experimental results,
whereas no such transition is evident in vortex dipoles of any size. This is of particular
interest given that the Norbury family has been successfully employed to model the
growth of experimental vortex rings (Gharib et al. 1998; Mohseni & Gharib 1998;
Shusser & Gharib 2000; Linden & Turner 2001), and that Afanasyev (2006) has noted
that vortex dipoles closely resemble members of the Pierrehumbert family during their
development.
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In reality, however, vortex rings and dipoles formed from roll-up of a shear layer
exhibit a Gaussian vorticity distribution and are subject to a continuous injection
of vorticity from the shear layer. A more realistic vorticity distribution within the
vortex cores could be achieved by employing nested contours. In addition, more
realistic, continuous vortex models are available (Boyd & Ma 1990; Khvoles et al.
2005; Albrecht 2011), as are the viscous numerical methods necessary to study the
perturbation response of such vortices. Although more computationally expensive,
further work employing more realistic vorticity distributions, and analysing the
response to perturbations where vorticity is continuously injected at the rear of the
vortex, could yield further insight into the dynamics of the pinch-off of vortex rings
from their feeding shear layer.

The results of this study suggest the existence of a relationship between vortex
formation and the perturbation response of the leading vortex in a starting jet, which
allows for the possibility of predicting pinch-off based on the properties of the
developing vortex ring. Experimentally generated vortex rings can be characterized by
their non-dimensional circulation and energy to construct circulation-energy diagrams
such as those presented in §§ 3 and 4. Hence, the point on the Γ̄ –Ē diagram
corresponding to the onset of pinch-off can be identified. If pinch-off is modelled
as the point at which prolate perturbations to the leading vortex ring of a characteristic
size lead to the detrainment of circulation, then the characteristic perturbation size can
be determined by finding the perturbation size at which detrainment of circulation is
first observed at the point on the Γ̄ –Ē diagram corresponding to pinch-off. Thus, the
core thickness α at which pinch-off is expected to occur under a variety of conditions
can be determined, and subsequently pinch-off can be predicted by considering only
the characteristics of the leading vortex ring.

Such a perturbation-response-based criterion has the advantage that it could
potentially be extended even to non-axisymmetric vortex rings, and could thus prove
useful in a variety of biological applications where asymmetric vortex rings are the
norm. Examples include the wakes of swimming and flying animals (Dickinson &
Götz 1996; Kern & Koumoutsakos 2006; Kim & Gharib 2011) and the flow through
the mitral valve in the human heart (Bellhouse 1972; Reul, Talukder & Muller 1981;
Wieting & Stripling 1984; Domenichini, Pedrizzetti & Baccani 2005).
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