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Inviscid models for vortex rings and dipoles are constructed using nested patches of
vorticity. These models constitute more realistic approximations to experimental vortex
rings and dipoles than the single-contour models of Norbury and Pierrehumbert, and
nested contour dynamics algorithms allow their simulation with low computational
cost. In two dimensions, nested-contour models for the analytical Lamb dipole
are constructed. In the axisymmetric case, a family of models for vortex rings
generated by a piston–cylinder apparatus at different stroke ratios is constructed from
experimental data. The perturbation response of this family is considered by the
introduction of a small region of vorticity at the rear of the vortex, which mimics
the addition of circulation to a growing vortex ring by a feeding shear layer. Model
vortex rings are found to either accept the additional circulation or shed vorticity
into a tail, depending on the perturbation size. A change in the behaviour of the
model vortex rings is identified at a stroke ratio of three, when it is found that the
maximum relative perturbation size vortex rings can accept becomes approximately
constant. We hypothesise that this change in response is related to pinch-off, and
that pinch-off might be understood and predicted based on the perturbation responses
of model vortex rings. In particular, we suggest that a perturbation response-based
framework can be useful in understanding vortex formation in biological flows.
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1. Introduction
Vortex rings are a recurring feature in a wide class of biological, atmospheric and

engineering flows (Turner 1960; Shariff & Leonard 1992; Lugt 1995; Gharib et al.
2006). In particular, vortex rings are often found in the wakes of swimming and
flying animals (Rayner 1979; Dickinson et al. 2000; Linden & Turner 2004; Dabiri
& Gharib 2005a). Given their ubiquity in nature and technology, vortex rings have
been the subject of numerous studies. Most commonly, vortex rings are generated
in experimental studies using a ‘piston–cylinder’ arrangement. In these experiments,
a fluid column of length L is ejected through the circular aperture or nozzle at the
end of a hollow cylinder of diameter D by a piston moving inside the cylinder with
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a prescribed velocity Up. Gharib, Rambod & Shariff (1998) showed that the growth
of vortex rings during fluid ejection cannot continue indefinitely, but rather there is
a physical limit to their size. Beyond this limit, which occurred a stroke ratio of
L/D ≈ 4, Gharib et al. (1998) found that vortex rings stopped accepting vorticity
during fluid ejection and additional vorticity flux formed a wake of Kelvin–Helmoltz-
type vortices instead. They termed the disconnection of the velocity and vorticity fields
of the vortex ring from its feeding shear layer ‘vortex pinch-off’. Krueger & Gharib
(2003) have demonstrated that the pinch-off process has dynamical significance, as
the efficiency of momentum transport in pulsed jets is optimised when the size of the
vortex rings generated by the jet is maximised. In addition, there is evidence that some
natural systems make use of this phenomenon for efficient fluid transport (Linden &
Turner 2004; Dabiri & Gharib 2005a; Gharib et al. 2006; Dabiri et al. 2010).

Gharib et al. (1998) attributed the occurrence of pinch-off to an energy-based
argument due to Kelvin and Benjamin (Kelvin 1880; Benjamin 1976), which states
that a vortex ring is a steady solution of the incompressible Euler equations only
when it has maximum energy with respect to rearrangements of the vorticity density
that preserve the same total impulse. However, in practice it is difficult to show
that a particular vortex ring with a realistic vorticity distribution maximises the total
energy with respect to alternative configurations, as outlined by the Kelvin–Benjamin
principle. As a result, Gharib et al. (1998) relied on a combination of modelling and
empirical results to show that, at a vortex formation time (T̂=Upt/D, where Up is the
mean piston speed) of approximately 4, the piston–cylinder vortex generator apparatus
cannot meet the impulse-normalised energy requirements necessary to generate an
isolated vortex ring.

Since the original model of Gharib et al. (1998) relied on empirical input, a number
of models explaining and attempting to predict pinch-off were developed subsequently,
including those of Mohseni & Gharib (1998), Shusser & Gharib (2000), Linden &
Turner (2001), Kaplanski & Rudi (2005), Fukumoto & Kaplanski (2008) and Gao &
Yu (2010). Despite this wealth of models, no single one has emerged as the preferred
means of predicting pinch-off. This is due, in part, to existing models not being
easily applicable to all biological and engineering flows. Most existing models rely
on quantifying the circulation, impulse, energy or velocity of the growing vortex ring,
as well as of the shear layer feeding it. Therefore, these models prove difficult to
apply when the flux of circulation and energy into the vortex ring, or the velocity
of the shear layer, cannot be easily quantified. In these cases, which include most
examples of swimming and flying animals, the utility of existing models is limited. In
these complex biological flows, criteria for identifying and predicting pinch-off based
on the properties of the vortex rings in the wake alone are desirable. In this study,
we consider the perturbation response of models for these vortex rings, in order to
explore the link between the behaviour of the wake vortices and pinch-off.

Notably, both the argument of Gharib et al. (1998) and the models of Mohseni &
Gharib (1998), Shusser & Gharib (2000), Linden & Turner (2001) and Gao & Yu
(2010) make use of a family of vortex rings introduced by Norbury (1973) as a model
for axisymmetric vortex rings. The Norbury family consists of steadily translating
axisymmetric vortex rings with finite core size, ranging from classical thin-cored
vortices to Hill’s spherical vortex. In all members of the family, the vorticity density
(ω/r, where r is the radial coordinate) is constant inside the core. While vortex
formation and pinch-off is an unsteady process, a quasi-steady approximation has
been employed successfully in the past to model the dynamics of the growing
experimentally generated vortex rings using the steady Norbury vortices. In the
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studies of Gharib et al. (1998), Mohseni & Gharib (1998), Shusser & Gharib (2000),
Linden & Turner (2001) and Gao & Yu (2010), members of the Norbury family
of vortices serve as low-order models of experimentally generated vortex rings of
different core sizes.

In a previous study (O’Farrell & Dabiri 2012), we considered the phenomenon
of pinch-off by studying the perturbation response of the different members of the
Norbury family using contour dynamics methods. We found a change in the response
of the perturbed vortices as we considered vortices of increasing core size, which
was analogous to pinch-off. Given that these vortices have been used to model
vortex rings at different stages in their growth, this change in response suggests
that the perturbation response of models for isolated vortex rings could be a useful
tool in understanding the pinch-off of vortex rings in real flows. Since pinch-off
was not expected to occur in two dimensions (Afanasyev 2006; Pedrizzetti 2010),
this conjecture was supported by the fact that no such change in response was
observed when we considered perturbations to a two-dimensional analogue to the
Norbury family of vortex rings, namely the Pierrehumbert family of vortex dipoles
(Pierrehumbert 1980).

However, the vortex rings and dipoles considered in O’Farrell & Dabiri (2012)
consisted of single patches inside which the vorticity was constant (in the two-
dimensional case) or a linear function of the distance from the axis of symmetry
(in the axisymmetric case). In contrast, experimentally generated vortex rings are
characterised by a Gaussian distribution of vorticity (Weigand & Gharib 1997)
and the vorticity in experimentally generated dipoles is well-approximated by
Bessel functions (Flór & van Heijst 1994; Trieling et al. 2010). Therefore, there
is room for improvement of our understanding of the relationship between the
perturbation response of models for isolated vortex rings and dipoles, and the
pinch-off phenomenon observed in laboratory flows and in the field, by considering
more realistic models for the vortices. In two dimensions, more realistic vortex
models with continuous distributions of vorticity have been previously studied by
Boyd & Ma (1990), Kizner & Khvoles (2004), Khvoles, Berson & Kizner (2005)
and Albrecht, Elcrat & Miller (2011), and others; whereas Kaplanski & Rudi (2005)
and Fukumoto & Kaplanski (2008) have considered similar models for vortex rings.
Unlike the inviscid solutions of Norbury (1973) and Pierrehumbert (1980), these
models were viscous and studying their perturbation response required the use of
viscous flow solvers.

More realistic models for both vortex rings and dipoles can be constructed, while
preserving the computational advantages of the contour dynamics formulation, by
considering multiple nested patches of vorticity. This arrangement enables the
approximation of more realistic continuous distributions of vorticity by piecewise-
constant or piecewise-linear distributions, in two-dimensional and axisymmetric flows,
respectively. Thus constructed, the models remain inviscid and their evolution can be
computed using contour dynamics algorithms.

In two dimensions, vorticity distributions of arbitrary complexity can be
approximated in a piecewise-constant fashion by using multiple nested patches of
constant vorticity (Zabusky, Hughes & Roberts 1979). To date, only a handful of
studies have employed nested patches to simulate the evolution of vortices with
smooth vorticity distributions. Dritschel (1989) simulated the evolution of an elliptic
vortex modelled in a similar way to the elliptic vortices with smooth vorticity
distributions considered by Mellander, McWilliams & Zabusky (1987), using eight
nested regions of constant vorticity. Similarly, Pullin & Jacobs (1986) conducted
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four-contour simulations of Corcos–Lin vortex arrays (Corcos & Lin 1984; Corcos,
Sherman & Lin 1984; Lin & Corcos 1984) and Jacobs & Pullin (1989) utilised
eight- and 16-contour approximations to study the evolution of a shear layer with a
Gaussian vorticity distribution.

In the case of axisymmetric flows, the contributions from multiple regions of linear
vorticity distribution may be combined by linear superposition to allow the simulation
of systems with multiple patches, using the axisymmetric contour dynamics algorithm
of Shariff, Leonard & Ferziger (2008). In fact, Shariff et al. (2008) mentioned the
possibility of using nested contours to approximate arbitrary vorticity distributions by
piecewise-linear ones. However, the authors considered only the case of a ‘hollow’
spherical vortex, which consisted of a region of zero vorticity nested within a spherical
region with a linear distribution of vorticity (i.e. Hill’s spherical vortex). To date, no
studies that make use of nested contours to construct approximations to experimental
vortex rings are available that are more realistic than the Norbury family employed
by most existing models for vortex pinch-off.

In this study, we used nested-contour dynamics to construct more realistic inviscid
models for the vortex rings found in starting jets, and considered the perturbation
response of these models. Model vortex rings were constructed from experimental
data from a starting jet, and consisted of several nested contours. Since the model
vortices were described by several contours, perturbations to the vortices could be
easily introduced in the form of deformations to the shape of the contours. Hence, we
analysed the response of the model vortex rings to shape perturbations in a manner
similar to our previous analysis of the Norbury family (O’Farrell & Dabiri 2012).

In order to obtain a more realistic model for the perturbations that vortex rings
experience during formation, we devised a perturbation scheme that consisted of
deforming the rear boundary of the vortex by introducing a small protuberance. This
perturbation mimicked the introduction of a small amount of vorticity at the rear of a
forming vortex ring by interaction with its feeding shear layer. Using this perturbation
scheme, we were able to identify a change in the behaviour of our model vortex rings
that was consistent with pinch-off. Similar methods can be applied to the construction
of models for vortex rings in biological flows. Study of the response of these models
to a wider class of perturbations could enable prediction of the pinch-off phenomenon
in more complex biological flows.

The paper is organised as follows. In § 2 we outline the mathematical and numerical
framework for computation of the evolution of multiple regions of vorticity using
contour dynamics algorithms. A test case for these methods is presented in § 3,
where we model the analytical Lamb dipole using nested contours. In § 4 and § 5 we
discuss the construction of model vortex rings from experimental data for a starting
jet, and we consider their perturbation response in § 6. Finally, concluding remarks
are presented in § 7.

2. Mathematical formulation and numerical method
2.1. Contour dynamics formulation for multiple contours

We considered the evolution of axisymmetric vortex rings and two-dimensional
vortices constructed from nested patches of vorticity, using contour dynamics methods.
Figure 1 shows a schematic of a symmetric vortex dipole or axisymmetric vortex ring
constructed from three nested patches of vorticity. The areas of the nested patches
are denoted by A1, A2 and A3, and distances have been normalised by R, which
represents the ring radius or half the dipole spacing.
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FIGURE 1. The coordinates and parameters defined in the text for nested-contour models
for vortex rings and dipoles. Three nested patches A1, A2 and A3 are shown, and the Ωj
represent the increment in Ω as each contour is crossed inwards, s is the path coordinate
along each contour. The vortices propagate from left to right.

In two dimensions, the velocity induced at a point z= x+ iy in the complex plane
by n patches Aj (j= 1, . . . , n) of constant vorticity (nested or otherwise) is given by

ux + iuy =− 1
4π

n∑
j=1

Ωj

∮
∂Aj

z− z′

z̄− z̄′
dz′, (2.1)

where j iterates over all contours (Pullin 1981; Dritschel 1988b). Where the contours
are nested, Ωj represents the increment in ω when crossing the jth contour inwards
(see figure 1). When simulating vortex dipoles, we considered only the case where
the flow was symmetric about the x-axis. In this case, n referred to the number of
nested contours comprising one of the symmetric vortex cores, usually taken to be
the positive core. The contribution to the velocity from the negatively valued core was
derived from symmetry.

Shariff et al. (2008) extended the contour dynamics method to the case of
axisymmetric regions with a distribution of vorticity that is linear in the radial
coordinate (ω =Ωr, where Ω is a constant). The equation for the velocity induced
at a point x by n regions Aj with a linear distribution of vorticity is given by

u(x)=
n∑

j=1

Ωj

∮
∂Aj

[(x− x′)G(s′) cos θ ′ − rH(s′) sin θ ′]x̂+ r′H(s′) cos θ ′r̂ ds′, (2.2)

where in this case Ωj represents the jump in ξ = ω/r when crossing the jth contour
inwards, and H and G are given by

G(s′)= r′

π
√

C+ B
K(k), (2.3)

H(s′)= 1
2πr

(
C√

C+ B
K(k)− E(k)

√
C+ B

)
, (2.4)

k=
√

2B
C+ B

, (2.5)

C= (x− x′)2 + r2 + r′2, B= 2rr′. (2.6a,b)
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Here, θ ′(s′, α) is the angle of the outward-pointing normal relative to the symmetry
axis, and K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively.

2.2. Numerical method
The contour dynamics algorithms described in the preceding section reduced the
evolution problem to tracking the motion of a collection of marker points on the
boundary of each contour, by numerical integration of (2.1) or (2.2). Numerical
integration was carried out using a method similar to that described in O’Farrell &
Dabiri (2012). Contour integration was performed by discretising each contour using
linear segments, and evaluating the contribution from segments not adjacent to the
field point using Gaussian quadrature. Equation (2.1) is singular as (z′− z)→ 0, but it
may be evaluated exactly over linear segments. As a result, the contribution to (2.1)
from segments adjacent to the field point was computed analytically. Equation (2.2) is
also singular as x′→ x, but, unlike in the two-dimensional case, the contributions from
segments adjacent to the field point cannot be evaluated exactly due to the presence
of elliptic integrals. Hence, we rely on fourth-order log-polynomial approximations
to the elliptic integrals of the first and second kind to evaluate the contributions to
the velocity from adjacent segments (Shariff et al. 2008).

The solution was marched forward in time using a fourth-order Runge–Kutta
scheme. At each time step, additional marker points were inserted where the linear
segments stretched beyond 0.016R and removed where segments shrank below
0.004R (Shariff et al. 2008). In the axisymmetric cases, marker points were also
inserted to ensure that the length of the segments remained small compared with
the radial coordinate of their end points (1`/r < 0.15), so that the log-polynomial
approximations remained valid (Shariff et al. 2008). Following Shariff et al. (2008),
the time step was chosen to satisfy 1t = (0.05/Ω0), where Ω0 was the vorticity at
the centre of the vortex ring core in the axisymmetric case (Ω0 =

∑n
j=1 ΩjR), or

the vorticity inside the innermost contour of the positively signed vortex patch in
the two-dimensional case (Ω0 =

∑n
j=1 Ωj). The flow invariants (circulation, impulse

and energy) were monitored and their change was kept below 0.01 % over one eddy
turnover period for the impulse and circulation, and 0.02 % over the same period for
the energy.

2.3. Verification
In order to verify our implementation of these numerical algorithms, we first
considered the evolution of arrangements consisting of only two nested contours.
In particular, we considered ‘hollow’ vortices with a zero-vorticity patch at their
centre. Figure 2 shows the evolution of a pair of symmetric annular vortices. The
vortices were constructed by removing regions of vortical fluid from one of the
steadily translating dipoles described by Pierrehumbert (1980). Following Shariff
et al. (2008), the boundaries of the removed regions were chosen to be the interior
streamlines of the unperturbed dipole where ψ = ±0.25. Figure 2(b–e) shows the
evolution of the hollow vortex pair into a symmetric arrangement of eight vortices
connected by thin filaments. The time t∗ = Ut/R was normalised using the speed of
the unperturbed dipole (U) and the distance from the symmetry axis of the centre to
one of the vortices (R).

The evolution of hollow vortices into patches of vorticity connected by thin
sheets was also observed to occur in the axisymmetric case by Shariff et al. (2008).
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FIGURE 2. The evolution of a pair of annular vortices formed by removing a region of
vortical fluid from a Pierrehumbert dipole, at (a) t∗= 0, (b) t∗= 7.5, (c) t∗= 15, (d) t∗=
22.5 and (e) t∗= 30. The boundaries of the regions removed were the interior streamlines
of the unperturbed dipole where ψ =±0.25.

Therefore, in order to verify our implementation of the axisymmetric contour
dynamics algorithm for multiple contours, we considered the evolution of a hollow
spherical vortex constructed by removing a region of vortical fluid from Hill’s
spherical vortex of radius 2R. Following Shariff et al. (2008), the boundary of the
region removed was chosen to be an interior streamsurface of the unperturbed Hill’s
vortex. In our case, the boundary of the removed region was the streamsurface where
ψ = (Ω/10)r2((2R)2 − r2 − x2) = 0.21. Figure 3 shows the breakup of the hollow
vortex. Once again, the time t∗ = Ut/R was normalised using the speed and radius
of the unperturbed Hill’s vortex. The results in figure 3 agree qualitatively with the
evolution of the vortex described by Shariff et al. (2008). However, since Shariff et al.
(2008) did not indicate the streamsurface they selected for their study, a quantitative
comparison was not possible.
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FIGURE 3. The evolution of a hollow spherical vortex formed by removing a region of
vortical fluid from Hill’s spherical vortex of radius 2R, at (a) t∗= 0, (b) t∗= 3.4, (c) t∗=
6.8, (d) t∗= 10.2 and (e) t∗= 13.6. The boundary of the region removed was the interior
streamsurface of the unperturbed Hill’s vortex where ψ = (Ω/10)r2((2R)2− r2− x2)=0.21.

Having verified our implementation of the contour dynamics algorithms for these
simple cases, we proceeded to the construction of a nested-contour model for an exact
solution of the incompressible Euler equations in two dimensions: the Lamb dipole.

3. Example: modelling the Lamb dipole
The Lamb–Chaplygin dipole is a steadily translating solution to the two-dimensional

incompressible Euler equations, which takes the form of a vortex dipole with a
circular boundary and a continuous distribution of vorticity. Inside the circular dipole
of radius ρ0, the vorticity and stream function are linearly related by ω= b2(ψ − λ),
where b and λ are constants. This general form of the dipole is due to Chaplygin
(1903), and was more recently brought to the attention of the scientific community
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FIGURE 4. The Lamb dipole and a five-contour approximation to the analytical solution.
(a) Contours of ω/ωmax for the Lamb dipole. The black lines show the locations of five
contours used in a piecewise-constant approximation. The dipole propagates from left
to right. (b) Analytical (– –) and piecewise-constant (—) vorticity distributions along the
centreline of the positively valued vortex. The location of the cross-section is shown by
a dashed line in (a).

by Meleshko & van Heijst (1994). Previously, the special case where λ= 0 had been
described by Sir Horace Lamb, and is known as the Lamb dipole (Lamb 1895, 1906).

The resulting vorticity field is given by

ω=


2Ub
J0(bρ0)

J1(bρ) sin ζ + λb2

[
1− J0(bρ)

J0(bρ0)

]
, ρ 6 ρ0,

0, ρ > ρ0,

(3.1)

where ρ and ζ are the radial and azimuthal coordinates defined from the centre of
the circular dipole, respectively, and J0 and J1 are Bessel functions. The constant b is
such that bρ0 is the smallest positive root of J1(bρ0)= 0. When λ= 0, the two halves
of the circular dipole are symmetric, and the vortex is asymmetric when λ 6= 0. In all
cases, however, the dipole translates forward with constant velocity U.

Figure 4(a) shows the contours of the vorticity distribution inside the circular dipole
for the symmetric case (λ= 0, the Lamb dipole). The black lines in figure 4(a) show
the five contours selected for a nested-contour model of the Lamb dipole. As noted
previously, we assumed symmetry of the flow across the x-axis, so that the positively
valued half of the core was modelled using five contours, and the contribution from
the other half was derived from symmetry. Figure 4(b) shows the vorticity distribution
along the centreline of the positively valued core of the Lamb dipole (dashed line),
along with the piecewise-constant approximation obtained from the nested-contour
model (solid line).

Figure 5 shows the evolution of the five-nested-contour model of the Lamb dipole,
where the time and length have been normalised by ρ0/U and ρ0, respectively. Initially,
a small amount of irrotational fluid was entrained at the rear of the vortex (figure 5b).
Eventually, the entrained fluid formed a thin cap near the forward stagnation point,
which is visible in figure 5(d). A small amount of vortical fluid was also detrained
into a small filament, which is seen trailing behind the dipole in figure 5(e). The
formation of this tail of vorticity was also observed by van Geffen & van Heijst
(1998) in their viscous numerical simulation of the Lamb dipole, and deemed by the
authors to have minimal influence on the motion of the vortex. Despite the formation
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FIGURE 5. The evolution of a five-contour approximation to the Lamb dipole at (a) t∗=
Ut/ρ0 = 0, (b) t∗ = 1.25, (c) t∗ = 2.5, (d) t∗ = 3.75 and (e) t∗ = 5. The interior of the
contours has been coloured by ω/ωmax. The time and length have been normalised by the
radius of the circular dipole (ρ0) and the translation velocity of the analytical solution (U).

of these thin filaments, the model dipole retained a shape that closely resembled the
analytical Lamb dipole. In addition, the vortex was found to have translated forward
by an amount exceeding the expected 5ρ0 by only 0.6 % at t∗=Ut/ρ0= 5 (figure 5e).

The accuracy of the nested-contour model for the Lamb dipole was found to
improve when the number of contours used in the approximation was increased
(figure 6). Figure 6(a) shows the circulation in one of the trailing filaments, expressed
as a percentage of the circulation in the positive core of the analytical solution, as
a function of the number of contours in the model. Similarly, figure 6(b) shows
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FIGURE 6. The effect of increasing the number of contours on the accuracy of the model.
(a) Circulation in the vortex filament, expressed as a percentage of circulation in the
analytical solution, as a function of the number of contours. (b) Comparison of the average
translating velocity of the model dipole (U) and the analytical value (U), as a function
of the number of contours.

a comparison of the average velocity of the model dipole (U) and velocity of the
Lamb solution (U), for an increasing number of contours. When five contours were
employed, the circulation in the filament was less than 0.1 % of the core circulation,
and the average velocity of the model dipole was within 1 % of the Lamb value. It is
clear from figure 6 that the nested-contour model constituted a good approximation to
the Lamb dipole even for as few as five nested contours, and that the accuracy of the
model increased with an increasing number of contours. In addition, figure 7 shows
that the results for the five-contour model were largely insensitive to the specific
numerical parameters used in the simulation. Figure 7(a) shows the normalised
average velocity of the model dipole obtained from simulations employing different
time steps, while figure 7(b) shows a plot of the average velocity for simulations
where the maximum allowable length for the contour segments was varied.

4. The construction of piecewise-linear models for axisymmetric vortex rings
Multiple nested contours can also be used in axisymmetric flows to obtain

piecewise-linear approximations to the vorticity distributions inside vortex rings.
However, unlike in the two-dimensional case, no exact solutions to the Euler
equations for a vortex ring are known, other than those considered by Hill (1894)
and Norbury (1973). Therefore, we used several nested contours to construct models
for axisymmetric vortex rings generated experimentally using a piston–cylinder
arrangement.

For this purpose, we considered the vortex rings generated in the long-stroke-ratio
(L/D = 12) starting jet analysed in O’Farrell & Dabiri (2010). Our objective was
to obtain nested-contour models for the vortex ring at different stages of its growth,
until its saturation and pinch-off. Therefore, we constructed models for vortex rings
with stroke ratios (L/D)desired = 1, 2, 3 and 4. Rather than conducting four different
experiments to generate isolated vortex rings at these stroke ratios, we extracted from
different time instants of the L/D = 12 data the vortex rings for which the total
circulation matched the circulation expected in isolated vortex rings of the desired
stroke ratio.
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FIGURE 7. The sensitivity of the simulation to the numerical parameters. Comparison of
the average translating velocity of the model dipole (U) and the analytical value (U) as
a function of (a) the size of the time step and (b) the maximum segment length ε.

When looking at the time history of the L/D = 12 data, we considered that if
fluid ejection were halted at a non-dimensional time of T̂ =Upt/D= (L/D)desired, the
resulting isolated vortex ring would have a circulation equal to the total circulation
ejected by the apparatus up to T̂ = (L/D)desired, which we called Γdesired. However, all
of Γdesired need not be found in the leading vortex immediately after T̂ = (L/D)desired;
some of it may remain in the trailing jet and be absorbed by the ring some time later.
Figure 8 shows the time histories of the total circulation emanating from the apparatus
(Γ ), as well as the circulation in the leading vortex ring (Γring). In the figure, Γring is
identical to the total circulation until T̂ ≈ 2. For T̂ > 2, the vortex ring advected away
from the nozzle, while remaining attached to the shear layer and continuing to accept
circulation from it (Gharib et al. 1998; Gao & Yu 2010; Domenichini 2011). As a
result of this separation of the vortex ring from the nozzle edge, vortical fluid ejected
after T̂ ≈ 2 was not immediately absorbed by the vortex, and Γring increased at a rate
slower than the total circulation.

Consequently, for (L/D)desired > 2, the leading vortex ring at T̂ = (L/D)desired did
not yet contain the same circulation as an isolated vortex ring with the desired stroke
ratio. Therefore, it was not sufficient to look at instantaneous contours of vorticity at
T̂ = (L/D)desired to obtain model vortex rings at these desired stroke ratios. Rather, we
needed to determine the time instant at which the leading vortex ring in the L/D= 12
data achieved the desired circulation Γdesired. We achieved this by comparing Γring(T̂)
for the L/D= 12 data with the time history of the total circulation (Γ (T̂)), to find the
T̂model at which the circulation in the leading vortex ring equalled the total circulation
at T̂ = (L/D)desired (i.e. we searched for T̂model such that Γring(T̂model) = Γdesired). We
then used instantaneous contours of vorticity at T̂model to model the vortex ring with
(L/D)desired.

The annotations and arrows in figure 8 illustrate this process for (L/D)desired = 4,
where T̂model was found to be 7.8. We first found the total circulation at T̂ =
(L/D)desired = 4 (Γdesired = 38 cm2 s−1) and then searched for the T̂model at which
the circulation in the leading vortex ring was equal to Γdesired.

Having determined T̂model, we constructed a nested-contour model by extracting
contours of the vorticity density (ξ = ω/r) at T̂ = T̂model for the leading vortex in
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FIGURE 8. The total circulation emanating from the nozzle (– –) and the vortex ring
circulation (◦) as a function of the formation time T̂ for an experimentally generated
vortex ring. The arrows illustrate the method used to determine T̂model when modelling
a vortex ring with a stroke ratio of 4. The total circulation emanating from the nozzle
at T̂ = 4 was compared with the time history of the vortex ring, to determine the T̂ at
which all of the circulation ejected by T̂ = (L/D)desired = 4 (Γdesired) had been absorbed by
the vortex ring.

the experimental data. Figure 9(a) shows contours of vorticity at T̂ = T̂model = 7.8. In
order to apply the axisymmetric contour dynamics algorithm described in § 2.1, our
models were required to consist of nested regions with linear distributions of vorticity
ωm =

∑m
j=1 Ωjr (where m ∈ [1, . . . , n]). Therefore, we constructed our models by

extracting contours of constant ξ from the experimental data, and assuming the value
of ξ within each contour to have a constant value ξm=

∑m
j=1Ωj (where m∈ [1, . . . , n]).

Figure 9(b) shows five instantaneous contours of vorticity density at T̂ = 7.8, used
to construct a five-nested-contour model for a vortex ring with a stroke ratio of 4.
The small regions of high ξ near the symmetry axis between x/D ≈ 4 and x/D ≈ 6
(which are absent in the contours of ω in figure 9a) are due to noise in the vorticity
field, which is amplified when divided by small values of r.

Figure 10 shows these same contours of ξ , along with the five-contour model of
the vortex which was constructed from these contours (in red). The vorticity density
ξ in the leading vortex ring core at T̂ = 7.8 (shown in figure 10) was averaged with
the distributions of ξ in the cores at the two adjacent time steps, in order to provide a
smoother distribution. The vorticity densities around the cross-sections of the ring in
the positive r half-plane and the negative r half-plane were also averaged to increase
the smoothness of the contours in the model. Five contours of constant ξ were then
extracted from the averaged vorticity density, and used to construct the model shown
in red in figure 10. Because the vortex ring remained attached to the shear layer, the
rear boundary of the ring was not easily distinguishable. However, isolated laminar
vortex rings are known from flow visualisation experiments to exhibit high degrees of
fore–aft symmetry (Lim & Nickels 1995). Therefore, we reflected the contour shapes
obtained for the front half of the vortex about the core centreline, and constructed the
symmetric core shown in figure 10.

A comparison of the distributions of ξ and ω along the centreline of the vortex core
in the experimental and model vortex rings is shown in figure 11. Since in the model
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FIGURE 9. Contours of vorticity and vorticity density at T̂= 7.8, the time instant at which
all of the vorticity generated by T̂ = 4 had been accepted by the vortex ring. (a) Contours
of ω. Levels: min= 10 % of ωmax, max= 90 % of ωmax, increment= 10 %. Negative values
are denoted by the dashed lines. (b) Contours of ξ/ξmax, where ξmax is the maximum ξ
inside the cores. Levels: 0.09, 0.36, 0.49, 0.68, 0.88. Flow is from left to right.

x / D

r / D

2.5 3.0 3.5 4.0 4.5 5.0
−1.5

−1.0

−0.5

0

0.5

1.0

1.5

0.1

0.3

0.5

0.7

0.9

FIGURE 10. Contours of ξ/ξmax at T̂ = 7.8 ((L/D)desired = 4) and the superimposed five-
contour model of a vortex ring with a stroke ratio of 4 (in red). Contour levels: 0.09,
0.36, 0.49, 0.68, 0.88. The direction of flow and the direction of propagation of the model
vortex ring coincide with the direction of increasing x.

vortex ring the vorticity density was assumed to be constant inside each contour (ξm=∑m
j=1 Ωj, where m ∈ [1, . . . , n]), the experimental distribution of ξ was approximated
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FIGURE 11. (a) Experimental (– –) and five-contour model (—) distribution of ξ/ξmax
along the centreline of one of the cores of the vortex ring. (b) Experimental (– –) and
five-contour model (—) vorticity distribution along the centreline of one of the cores of
the vortex ring.

by a series of steps (figure 11a) in the model. However, the vorticity inside each
contour in the model vortex was given by ωm= ξmr=∑m

j=1Ωjr (where m∈ [1, . . . , n]).
Hence, the model vorticity tracked the experimental vorticity well on the half of the
core closest to the symmetry axis, where ω had a positive slope in both cases (r/D<
0.85 in figure 11b). However, where the experimental vorticity was decreasing in r,
the model ω (which was constrained to have a positive slope) had a jagged shape
(r/D> 0.85 in figure 11b).

5. The search for steady-state models for experimental vortex rings
Using the numerical scheme described in § 2.1, we simulated the evolution of the

nested-contour model for the vortex ring with a stroke ratio of 4 shown in figure 10.
Figure 12 shows the evolution of the vortex ring as a function of the normalised
time t∗ = Upt/D, where Up and D are the time-averaged piston velocity and nozzle
diameter from the experimental data, respectively. Since the model was seen to detrain
the circulation into a tail of considerable size, the five contours obtained directly from
the experimental data did not comprise a steady solution of the Euler equations. This
is not unexpected, for a number of reasons. At least a small amount of detrainment is
expected, given our findings in modelling the Lamb dipole. In the case of the Lamb
dipole, however, the vorticity distribution was an exact solution to the Euler equations.
In the axisymmetric case, the vorticity distribution being modelled was obtained from
a viscous case (Re= 1400), while the contour dynamics algorithm solves the inviscid
vorticity equation. Therefore, the contours obtained from the experiment were not
expected to closely approximate an inviscid solution.

At the stage shown in figure 12(e), the computational costs associated with
resolving the stretching of the tail made continuation of the simulation prohibitively
expensive. Continuation of this calculation in its current state would have required
implementation of the contour surgery algorithm developed by Dritschel (1988a),
which implied additional computational cost and a large increase in the complexity
of the algorithm. However, Pozrikidis (1986) was able to continue the simulation
of the evolution of perturbed spherical vortices after filament formation by excision
of the vortex filaments. Furthermore, Pozrikidis (1986) found this simplification to
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FIGURE 12. The evolution of a five-contour model of a vortex ring with L/D = 4, at
(a) t∗ = Upt/D = 0, (b) t∗ = 2.1, (c) t∗ = 4.3, (d) t∗ = 6.5 and (e) t∗ = 8.6. Inside each
contour, ξ = ω/r=Ωj is constant, and the interior of the contours has been coloured by
ξ/ξmax, where ξmax is the maximum vorticity density in the experimental data.

have a negligible effect on the accuracy of the simulations of the evolution of the
remaining vorticity, and the same method was successfully applied in O’Farrell &
Dabiri (2012). Since the vortex tail in figure 12(e) was not of particular interest, we
adopted the strategy described in Pozrikidis (1986) and excised the tail at t∗ = 8.6.
We then continued the simulation of the vortex without the tail.

Panels (a)–(e) of figure 13 show the evolution of the model vortex ring after the
excision of the tail. Once again, the vortex was found to shed circulation into a tail
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FIGURE 13. The evolution of a five-contour model of a vortex ring with L/D= 4 after
filament excision, at (a) t∗ = 8.7, (b) t∗ = 10.1, (c) t∗ = 11.6, (d) t∗ = 13.1 and (e) t∗ =
14.5, and after the second filament excision, at (f ) t∗ = 14.6, (g) t∗ = 16.7, (h) t∗ = 18.8,
(i) t∗= 21 and (j) t∗= 23.1. Inside each contour, ξ =ω/r=Ωj is constant, and the interior
of the contours has been coloured by ξ/ξmax, where ξmax is the maximum vorticity density
in the experimental data.

that trailed behind the ring. However, the amount of circulation shed by the vortex ring
in this case was significantly reduced. A second excision of the vorticity in the tail
allowed the simulation to continue to longer times. The evolution of the vortex ring
after the second excision is shown in panels (f )–(j) of figure 13, where the formation
of filaments which wrapped around the vortex core was observed, but no vorticity was
detrained into a tail. The formation of filaments has been observed in previous contour
dynamics studies under a variety of conditions (Deem & Zabusky 1978; Pozrikidis
1986; Ye & Chu 1995; O’Farrell & Dabiri 2012), and it is known to occur wherever
there are irregularities or regions of local concavity in the contour outline (O’Farrell
& Dabiri 2012).

We repeated this excision process several times, and monitored the evolution
of the vortex after each excision. Figure 14 shows the decrease in the vortex
ring circulation after each excision, expressed as a percentage of the circulation
immediately preceding the excision. It is clear from this figure that the amount
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FIGURE 14. The circulation in the vortex filament immediately before each excision,
expressed as a percentage of the vortex circulation before the excision.

of circulation shed by the vortex decreased after each excision. Furthermore, the
vortex appeared to be approaching an asymptotic steady state, since the decrease in
circulation was under 0.1 % by the sixth excision and the model vortex was found
to approach a steady translation velocity. Therefore, we used the configuration of the
five-contour-approximation after the sixth excision as our model for vortex rings with
a stroke ratio of 4.

The method outlined in § 4 was used to extract nested-contour approximations
for vortex rings with stroke ratios of L/D = 1, 2, 3, 4 from the experimental data.
Each of these models was evolved numerically in time as outlined in the preceding
paragraphs, with filaments being excised as needed, until their asymptotic steady shape
was determined. Figure 15 shows the resulting five-nested-contour models for vortex
rings at stroke ratios of 1, 2, 3 and 4. These models comprised a family which was
used to model vortex rings at different stages of their growth. Following Pozrikidis
(1986), Ye & Chu (1995) and our work on the Norbury and Pierrehumbert families
of vortices (O’Farrell & Dabiri 2012), we therefore investigated the perturbation
response of this family of vortex rings.

6. The perturbation responses of model vortex rings
In order to study the perturbation responses of model vortex rings in a starting jet

at different stages in their growth, and their relationship to pinch-off, we considered a
type of perturbation that simulated the addition of vorticity from a trailing shear layer.
The perturbation involved the addition of a small amount of circulation at the rear of
the vortex by perturbing the shape of the outermost contour. The perturbation to the
outer contour had the following form:

x′ =
x
[

1+ d sin
(

r− r(π)
w

π

)]
, π6 η6 ηw,

x, elsewhere,
(6.1)

where x′ was the perturbed coordinate, x and r were the unperturbed coordinates and
η was the polar angle as defined in figure 16. The r coordinate was unchanged, so the
perturbation amounted to inserting a tail of vorticity of length d and width w at the
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FIGURE 15. Models for vortex rings with L/D= 1, 2, 3, 4, constructed using five nested
regions of constant ξ = ω/r=Ωj. The regions are coloured by ξ/ξmax, where ξmax is the
maximum vorticity density inside the cores in the experimental data.
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FIGURE 16. Perturbation simulating a trailing shear layer, for a three-contour vortex. The
unperturbed vortex is depicted by the solid lines. The dashed lines represent a perturbation
of the type defined in (6.1) to the outer contour of a model vortex. The vortices propagate
from left to right.

rear of the vortex. Here, ηw was the polar angle at which r= r(π)+ w, as indicated
in figure 16. We considered perturbations where w= 2R/3, and d was varied in order
to investigate the change in the perturbation response of the vortices as the amount
of circulation introduced was increased.

The perturbation scheme introduced here was designed to mimic the pinch-off
of experimentally generated vortex rings. However, we have found that quantitative
changes in the details of the perturbation do not change the qualitative results
for the perturbation response. Similar behaviour was previously observed in the
perturbation response of the Norbury family, where we found that the details of the
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FIGURE 17. The evolution of a five-contour model of a vortex ring with L/D = 2,
subjected to a perturbation containing 2 % of the unperturbed circulation, at (a) t∗ = 0,
(b) t∗ = 2.7, (c) t∗ = 5.4, (d) t∗ = 8.1 and (e) t∗ = 10.8.

perturbations introduced to the family had little effect on the qualitative response
(O’Farrell & Dabiri 2012).

We introduced perturbations of the form described above to the four model vortices
in figure 15, and simulated the evolution of the perturbed vortices using the method
described in § 2.1. The size of the perturbations was quantified by the amount of
circulation added to the vortex ring by the perturbation, expressed as a percentage
of the circulation in the unperturbed vortex ring (1Γ/Γ (%)). Figure 17 depicts the
evolution of a model vortex ring with a stroke ratio of 2, subjected to a perturbation
containing 2 % of the unperturbed vortex circulation. The tail introduced by the
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FIGURE 18. The evolution of a five-contour model of a vortex ring with L/D = 2,
subjected to a perturbation containing 4 % of the unperturbed circulation, at (a) t∗ = 0,
(b) t∗ = 2.7, (c) t∗ = 5.4, (d) t∗ = 8.1 and (e) t∗ = 10.8.

perturbation was seen to develop into a vortex filament, much like those observed
previously when perturbing sufficiently thin-cored members of the Norbury family
(Ye & Chu 1995; O’Farrell & Dabiri 2012). Like in those cases, the filament was
found to wrap around the vortex core and continue to move with the vortex ring,
with no detrainment of vorticity into a tail.

When the size of the perturbation was increased, however, we noticed a change in
the response of the model vortex ring with L/D= 2. Figure 18 shows the evolution
of the model vortex ring with a stroke ratio of 2, when subjected to a perturbation
containing 4 % of the unperturbed vortex circulation. In this case, the vortex ring was
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FIGURE 19. The evolution of a five-contour model of a vortex ring with L/D = 4,
subjected to a perturbation containing 2 % of the unperturbed circulation, at (a) t∗ = 0,
(b) t∗ = 1.9, (c) t∗ = 3.8, (d) t∗ = 5.7 and (e) t∗ = 7.6.

found to detrain vorticity from the outermost contour into a tail that lingered behind
the ring.

For the model vortex ring with a stroke ratio of 4, the change in perturbation
response was found to occur at a perturbation size smaller than any of those
introduced to the vortex with L/D= 2. The evolution of a vortex ring with L/D= 4
subjected to a perturbation containing 2 % of the unperturbed vortex circulation is
shown in figure 19. The shedding of vorticity into a tail was apparent in this vortex
even for perturbations containing only 2 % of the unperturbed vortex circulation,
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FIGURE 20. The maximum perturbation size accepted by the model vortex, as a function
of the vortex stroke ratio. The perturbation size was quantified by the circulation added
to the vortex (1Γ ), expressed as a percentage of the vortex circulation.

which had not been observed to lead to tail shedding in the vortex with L/D = 2
(figure 17).

The fact that the vortex ring with L/D=2 was able to withstand larger perturbations
than the vortex with L/D = 4 without detraining vorticity into a tail suggests that
the response of the model vortices to this type of perturbation is consistent with
the occurrence of pinch-off in starting jets. We therefore determined the maximum
perturbation size that the four model vortex rings could accept before detraining
vorticity into a tail. These results are shown in figure 20, and indicate that the amount
of circulation the model vortex rings could accept before shedding a tail decreased
with increasing stroke ratio, before levelling off at a stroke ratio of approximately 3.

For small stroke ratios, a decrease in the maximum allowable perturbation size
before shedding was expected, as the model vortex rings grew closer to a limiting
size known to exist from the experiments of Gharib et al. (1998) and others (Dabiri
& Gharib 2004; Krueger, Dabiri & Gharib 2006; Pawlak et al. 2007). At a stroke
ratio of approximately 3, this decrease in the maximum perturbation size stopped,
indicating that the stroke-ratio-3 and -4 vortex rings were comparably close to the
limiting size.

The threshold perturbation size for each model was found to be largely insensitive
to the specific numerical parameters used in the simulation. For example, figure 21
shows that the maximum perturbation size accepted by the L/D= 4 model remained
within 1 % of the asymptotic value when 1t < 2.5/Ω0. The results were even more
insensitive to changes in the maximum allowable segment length.

7. Conclusions
We constructed models for vortex rings and vortex dipoles using several nested

patches of vorticity, and simulated their evolution using contour dynamics methods.
The use of nested contours allowed us to construct more realistic approximations to
vortex rings and dipoles, while retaining the computational simplicity of the inviscid
contour dynamics method.

In two dimensions, we constructed nested-contour models for the Lamb dipole,
and found their agreement with the analytical solution to be excellent, even for



544 C. O’Farrell and J. O. Dabiri

0 1 2 3 4 5
1.2

1.3

1.4

1.5

FIGURE 21. The sensitivity of the simulation to the numerical parameters. Comparison of
the maximum perturbation size accepted by the L/D= 4 model as a function of the size
of the time step.

models consisting of as few as five contours. In our contour dynamics simulations,
we demonstrated that nested regions of vorticity can be used to approximate dipolar
solutions to the Euler equations with high fidelity. The contour dynamics models
for dipolar vortices presented here are of great interest, given the widespread use of
the Lamb dipole and Lamb-like vortices in studies of two-dimensional turbulence. In
addition to the Lamb dipole, nested contours could be used to model the families of
deformed vortices derived from the Lamb dipole by Boyd & Ma (1990), Kizner &
Khvoles (2004) and Khvoles et al. (2005), which have also been used to model the
dipolar vortices found in two-dimensional turbulence and geophysical flows.

In the case of axisymmetric vortex flows, we obtained nested-contour models for the
vortex rings formed in starting jets. These models were constructed using contours of
vorticity density from experimental data of a piston–cylinder experiment with a long
stroke ratio, and were then allowed to asymptote to a steady state. From these steady
states, we were able to construct a family of model vortex rings at different stroke
ratios.

We considered the perturbation response of the model vortex rings to physically
pertinent shape perturbations, which simulated the addition of a small amount of
circulation to the rear of a vortex ring by the feeding shear layer. The results of the
perturbation study suggest that there is a transition in the response of these vortices
to this type of finite perturbation at a stroke ratio of approximately 3. For stroke
ratios below 3, we found that the relative amount of circulation a model vortex ring
could accept before shedding vorticity into a tail decreased with increasing stroke ratio.
This suggests that the model vortex rings of increasing stroke ratio were progressively
closer to the saturation size. Above a stroke ratio of 3, however, the relative amount
of circulation the vortex rings could accept in the form of these perturbations levelled
off. This change in behaviour was consistent with vortex pinch-off: vortex rings
of increasing stroke ratio were found to be increasingly sensitive to perturbation by
addition of vorticity, until a stroke ratio of 3. Model vortex rings with stroke ratios of
3 and 4 were found to be approximately equally sensitive to this type of perturbation,
suggesting that they are quite similar in structure and perturbation response.

Several mechanisms that trigger the pinch-off of the leading vortex ring have been
proposed to date, for a variety of configurations and flow conditions. Examples include
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the velocity of the vortex ring exceeding the velocity of the incoming shear layer
(Mohseni, Ran & Colonius 2000), and the instability of the trailing jet accelerating
the detachment of the leading vortex ring (Zhao, Frankel & Mongeau 2000). Several
methods to delay or prevent pinch-off by manipulating these mechanisms have also
been proposed and successfully demonstrated (Mohseni et al. 2000; Krueger & Gharib
2003; Dabiri & Gharib 2004, 2005b). These studies highlight the fact that pinch-off
can occur via more than one mechanism, and that several factors affect the formation
time of a vortex ring. While it has been suggested that the stability of the trailing
jet bears a close relation to pinch-off (Zhao et al. 2000), the current results suggest
that the stability of the leading vortex ring itself can also play a role that could be
sufficient to explain the vortex dynamics.

The change in behaviour in the model vortices at a stroke ratio of approximately 3
reported here differs from the occurrence of pinch-off at a stroke ratio of 4 reported
by Gharib et al. (1998) for circular starting jets, and at T̂=4.2±0.2 for this particular
data set (O’Farrell & Dabiri 2010). However, given that the inviscid models were
constructed from viscous experimental data and allowed vorticity to be shed until they
reached a steady state that differed from the experimental vorticity contours and had
lower total circulation, the qualitative robustness of the observed pinch-off phenomena
is encouraging.

Future work should focus on improving the accuracy of the contour dynamics
models, to develop increasingly realistic models for naturally occurring vortices
and allow for quantitative comparison with experimental results. To this end,
nested-contour models could be constructed using a larger class of experimental
data sets, as well as for numerical data, which have the advantage of providing
smoother vorticity contours from which to extract models. The accuracy of the
vortex models could also potentially be improved by increasing the number of nested
contours of which they are comprised.

At this stage, the greatest impediments to carrying out studies with an increased
number of contours or on a larger class of data sets are the expenses associated with
obtaining the asymptotic shapes of the vortex rings. In the present study, the contour
shapes obtained directly from the experimental data were not found to correspond to
steadily translating shapes. As a result, these shapes were allowed to approach their
asymptotic states by simulating them for times up to t∗ = 60. This necessitated
relatively costly long-time simulations, as well as labour-intensive excisions of
filaments. While the existence of steadily translating vortex ring solutions to the
equations of motion is well established both numerically and theoretically, the present
results suggest that such solutions may be obtained from steady or quasi-steady limits
from experimental data. Future work in developing a numerical method of finding
equilibrium shapes using nested contours similar to Norbury’s scheme (Norbury
1973) could sharply reduce these costs. The work of Aref & Vainchtein (1998) on
finding asymmetric point vortex equilibria, starting from previously known symmetric
equilibria, is one potential basis for finding nested-contour solutions, starting from
existing single-contour solutions.

The contour dynamics method was selected because of its simplicity and low
computational cost. In addition, we have found that only a small number of contours
are required to reproduce the behaviour of inviscid exact solutions using this method.
However, increased computational capabilities have made high-fidelity viscous direct
numerical simulations feasible in two dimensions and in axisymmetric geometries.
Therefore, further work employing direct numerical simulations could yield further
insight into the dynamics of pinch-off. In particular, it could allow for the extraction
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of viscous steady solutions more directly from experimental data, thus enabling a
more quantitative comparison of the results of a perturbation analysis with existing
experimental studies.

The present results show that only instantaneous shape perturbations to the
outermost contours of the model vortex rings are required to produce a change in
response with increasing stroke ratio. However, vortex rings in a starting jet are subject
to the continuous injection of vorticity from a feeding shear layer. Furthermore, the
vorticity in the trailing jet, while not comparable with that at the centre of the vortex
ring core, certainly exceeds the levels in the outermost regions of the core (those
bounded by the outermost contour in our model). Hence, in addition to improving
the accuracy of the approximations to the Gaussian vorticity distributions inside
vortex rings, the perturbation response method could be improved by incorporating
more realistic perturbations. Such a perturbation scheme would entail the continuous
injection of vorticity at the rear of the vortex, and it could be applied to multiple
contour levels to reflect the relative vorticity levels in the shear layer and vortex ring.

Ultimately, the aim of this line of research is the development of a perturbation
response framework for the analysis of vortex pinch-off, which is tailored to biological
applications where existing models for pinch-off prove difficult to apply. Therefore,
future work will focus on the application of contour dynamics methods to obtain
models for the vortices shed by swimming and flying animals and in cardiovascular
flows, and on extending the perturbation response methods introduced here to assess
the optimality of the vortices formed in biological systems.
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