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Abstract This paper presents an approach to quantify the

unsteady fluid forces, moments and mass transport gener-

ated by swimming animals, based on measurements of the

surrounding flow field. These goals are accomplished

within a framework that is independent of the vorticity

field, making it unnecessary to directly resolve boundary

layers on the animal, body–vortex interactions, or interac-

tions among vortex lines in the wake. Instead, the method

identifies Lagrangian coherent structures in the flow, whose

dynamics in flows with compact vorticity are shown to be

well approximated by potential flow concepts, especially

the Kirchhoff and deformation potentials from deformable

body theory. Examples of the application of these methods

are given for pectoral fin locomotion of the bluegill sunfish

and undulatory swimming of jellyfish, and the methods are

validated by analysis of a canonical starting vortex ring

flow. The transition to a Lagrangian approach toward

animal swimming measurements suggests the possibility of

implementing recently developed particle tracking (vis-à-

vis DPIV) techniques for fully three-dimensional

measurements of animal swimming.

1 Introduction

A distinguishing feature of animal swimming in real fluids

is the generation of vorticity and the shedding of vortices

into the wake. It is for this reason that much of the

experimental work on animal swimming has been

approached from a perspective that aims to quantify vor-

ticity dynamics (e.g. Drucker and Lauder 1999, 2001;

Wilga and Lauder 2004; Bartol et al. 2005; Dabiri et al.

2005; Stamhuis and Nauwelaerts 2005). The standard tool

for flow field measurements is digital particle image

velocimetry (DPIV), which quantifies the velocity field of

the flow in an Eulerian frame of reference, i.e. instanta-

neously and at fixed locations in space. The vorticity field

is then immediately deduced by numerically taking the curl

of the measured velocity field.

These wake studies have been complemented by theo-

retical tools that, in principle, enable the quantification of

instantaneous forces and moments created by the animal,

given knowledge of the surrounding flow field. However,

with the exception of purely steady flows, these methods

require either measurement of the boundary layers on the

animal, the replacement of the animal body with an

equivalent system of image vorticity, or measurements on

the surface of a control volume with length scales an order

of magnitude larger than the animal itself (Wu 1981; Noca

1997, 1999). Each of these options is difficult to achieve in

practice. Therefore, the state-of-the-art in the field is the

calculation of time-averaged forces, in which unsteady

effects like added-mass tend to cancel when integrated over

a swimming cycle (Daniel 1984).

The study of body–vortex interactions, such as those

occurring due to incident vortices from upstream or

generated by the head of the animal (e.g. Gopalkrishnan

et al. 1994; Liao et al. 2003; Beal et al. 2006), is also
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limited by practical obstacles to quantitative flow visual-

ization. The velocity and vorticity fields cannot usually be

well resolved at the interface between the animal and the

surrounding fluid while maintaining a full-field view of the

flow (see Anderson et al. 2001, for a notable exception).

Together these limitations represent a potential show-

stopper to more detailed and quantitative analyses of

animal swimming.

In general, the challenge of analyzing flow measure-

ments is related to the need to identify consistent

boundaries in the flow on which to evaluate the equations

of motion. The aforementioned theoretical tools rely on

either the fluid–solid boundary represented by the animal

surface, or a virtual, fluid–fluid boundary used to define a

control volume. Recent applications of Lagrangian, parti-

cle-tracking flow analyses have demonstrated that in many

unsteady flows there exist physically meaningful, fluid–

fluid boundaries that act as barriers to fluid transport. The

Lagrangian coherent structures (LCS) defined by these real

fluid–fluid boundaries are currently studied for their kine-

matic properties and have been used primarily to better

understand transport and mixing processes or to identify

fluid structures in turbulence (e.g. Haller 2000, 2001, 2002;

Green et al. 2006).

This paper examines the dynamic properties of LCS and

shows that these properties can be used to deduce the

forces and moments on a swimming animal. A distin-

guishing feature of this approach is that it does not appeal

to the vorticity dynamics in the flow. Instead, it is shown

that potential flow concepts from deformable body theory

can be used to approximate the LCS dynamics when the

vorticity field is sufficiently compact (i.e. bounded spa-

tially). The LCS tend to appear away from the surface of

the animal body but not at prohibitively large distances

away. Together these properties make it possible to

determine instantaneous, unsteady forces and moments

created by swimming animals without the need to resolve

boundary layers on the animal, to construct equivalent

image vorticity systems, or to use far-field control volume

analyses. In addition, the known transport properties of

LCS enable quantification of mass transport that is induced

by the animal during locomotion.

Recent implementation of these methods in studies of

the bluegill sunfish pectoral fin and the entire body of a

free-swimming jellyfish are highlighted to demonstrate the

capabilities and limitations of the present approach. To be

sure, the methods presented here are more generally

applicable than animal swimming. However, the study of

animal swimming provides a robust test of the method in

flows characterized by unsteady fluid–structure interactions

and complex vorticity dynamics. Validation using direct

numerical simulations of a starting vortex ring formed by a

piston-cylinder apparatus demonstrates the capabilities of

the method in a more canonical flow and helps to put these

results in the context of traditional fluid mechanics

analyses.

Section 2 presents the experimental and analytical

methods that constitute this vorticity-free approach to the

study of animal swimming. Examples of the resulting

measurements, taken from recent contributions by the

authors and coworkers, are presented in Sect. 3 along with

a validation of the method using direct numerical simula-

tions of vortex ring formation by a piston-cylinder

apparatus. Finally, Sect. 4 suggests a path forward that

addresses issues such as three-dimensional flow, in situ

animal measurements, and measurement validation.

2 Experimental and analytical methods

2.1 Identification of Lagrangian coherent structures

The first step in the vorticity-free approach to swimming

measurements is to identify the LCS from which fluid

dynamic forces and moments will be deduced. Haller

(2001) and Shadden et al. (2005, 2006) identify LCS as

ridges of local maxima in the finite-time Lyapunov expo-

nent (FTLE) field of a given flow. The FTLE measures the

maximum linearized growth rate of the distance between

initially adjacent fluid particles. To determine this quantity,

fluid particles are tracked over a finite time interval. Since

the available information regarding the velocity field u is

typically given in an Eulerian frame (e.g. DPIV), the par-

ticle trajectories x(t) are determined by numerical solution

of the ordinary differential equation

_x tð Þ ¼ u x tð Þ; tð Þ; ð1Þ

with the initial position of the fluid particle used as the

initial condition. The flow map, which maps fluid particles

from their initial location at time t0 to their location at time

t0 + T can be expressed as

ut0þT
t0
ðxÞ : xðt0Þ ! xðt0 þ TÞ; ð2Þ

where ut0þT
t0 ðxÞ ¼ xðt0 þ TÞ describes the current location

of a fluid particle advected from the location x(t0) at time t0
after a time interval T. A given infinitesimal perturbation

dx0 (i.e. fluid particle separation) at time t0 is transformed

to dx by the relation

dx ¼ rut0þT
t0
ðxÞdx0; ð3Þ

where rut0þT
t0 ðxÞ is the deformation gradient tensor and

defined by
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rut0þT
t0
ðxÞ ¼ dut0þT

t0 ðxÞ
dx

: ð4Þ

The magnitude of the mapped perturbation is defined by

the symbol dxk k and given by

dxk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx0; ½ruðxÞ��ruðxÞdx0h i
q

; ð5Þ

where [ ]* denotes the transpose of matrix [ ]. The inner

product can be written in summation form as

dx0; ½ruðxÞ��ruðxÞdx0h i
¼
X

i

X

j

X

k

ðdx0Þið½ruðxÞ��ÞikðruðxÞÞkjðdx0Þj ð6Þ

Let the symmetric matrix D be defined as the Cauchy–

Green deformation tensor:

D ¼ ½rut0þT
t0
ðxÞ��rut0þT

t0
ðxÞ; ð7Þ

and let kmax(D) be the maximum eigenvalue of the

Cauchy–Green deformation tensor. Note from Eq. 5 that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax Dð Þ
p

gives the maximum stretching of dx0 (i.e. the

maximum separation of fluid particle pairs initially located

at x(t0)) when dx0 is aligned with the eigenvector

associated with kmax(D); hence

dxk kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax Dð Þ
p

dx0k k: ð8Þ

The finite-time Lyapunov exponent rt
T(x) is then defined

as:

rT
t xð Þ ¼ 1

Tj j ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmax Dð Þ
p

¼ 1

Tj j ln
dx Tð Þ
dx 0ð Þ

�

�

�

�

�

�

�

�

: ð9Þ

Shadden et al. (2005) showed that the ridges of local

maxima in the FTLE field act as material lines in the flow

and, furthermore, are nearly perfect barriers to fluid

transport when computed in the limit as T becomes very

large. Shadden et al. (2005) also derived an estimate for the

fluid flux across an LCS that is deduced from finite-time

data (i.e. finite T in Eq. 9) and showed that, for practical

purposes, this quantity is often negligible. Hence, the LCS

are treated as ideal material lines in practice. The absolute

value |T| is used instead of T in Eq. 8 because FTLE can be

computed for T > 0 and T < 0. The material line is called a

repelling LCS (T > 0) over the time interval if infinitesimal

perturbations away from this line grow monotonically

under the linearized flow. The material line is called an

attracting LCS (T < 0) if it is a repelling LCS over the

interval in backward time. In the parlance of dynamical

systems, repelling and attracting LCS reveal stable and

unstable manifolds, respectively.

The FTLE field can be calculated from a time-series of

discrete velocity field data typical of DPIV measurements.

The flow map is determined by integration of the velocity

field and the FTLE can be calculated from the flow map.

There are currently at least two software packages available

for the calculation of FTLE fields from DPIV-type velocity

field data. MANGEN, a package developed by F. Lekien and

C. Coulliette, is a C-language program previously imple-

mented by Shadden et al. (2005, 2006) and is available for

download at http://www.lekien.com/*francois/software. A

MATLAB package for FTLE calculation has been devel-

oped by the authors (Peng and Dabiri 2007) and is available

for download at http://dabiri.caltech.edu/software.

The extraction of LCS curves from FTLE fields can be

accomplished by a variety of ad hoc methods including

thresholding or gradient searches of the FTLE field to

identify local maxima. Shadden (2006) derives more rig-

orous criteria than these; however, for practical purposes,

identification of LCS boundaries from well-resolved FTLE

fields is relatively insensitive to the implemented method

of extraction.

Figure 1 shows the forward-time and the backward-time

FTLE fields computed for a steadily propagating vortex ring

generated by a piston-cylinder apparatus (Shadden et al.

2006). The corresponding repelling and attracting LCS

identified by the ridges of high FTLE values are shown in

Fig. 2. The increasingly sinuous nature of the repelling

(attracting) LCS near the front (rear) of the vortex ring is the

result of perturbations from an ideal, unperturbed vortex

Fig. 1 Contour plot of forward-

time (left) backward-time

(right) FTLE fields for vortex

ring propagating from left to

right. LCS are identified by the

ridge of high FTLE values (red)
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ring configuration with connected stable and unstable

manifolds (i.e. connected streamlines emanating from the

rear and front stagnation points, respectively; see Shadden

et al. 2006). Increasing detail of this sinuous structure is

revealed with increasing integration time |T|.

2.2 The potential flow hypothesis

Given the geometry and kinematics of the LCS in the flow,

we aim to use these structures to deduce dynamics (i.e.

forces and moments) of the corresponding flow field. The

present method takes advantage of the fact that the LCS

represents a slip boundary in the flow on which a no

through-flow condition holds, since the LCS is a material

line. If we hypothesize that the shear stresses on and out-

side the LCS boundary are negligible, then the flow

external to the LCS can be solved as a linear homogenous

boundary value problem with nonhomogenous boundary

conditions, i.e. a solution of Laplace’s equation for the

velocity potential /.

The potential flow hypothesis is valid, for example,

when all of the vorticity in the flow is enclosed by the LCS,

as in the isolated vortex ring flow shown in Fig. 2 (Shadden

et al. 2006). If the potential flow hypothesis holds, we can

immediately make use of existing theory for the dynamics

of deformable bodies in potential flow in order to deduce

the forces and moments on the LCS. These forces and

moments can be related unambiguously to the dynamics of

the animal in the flow. The following section outlines the

governing equations of motion.

2.3 Equations of motion

Galper and Miloh (1995) have previously derived the

equations of motion for a deformable body in an arbitrary

potential flow field. We make direct use of these equations

presently, where the LCS structure is treated as a

deformable body. It is important to note that there exist no

a priori restrictions on which segments of the repelling and

attracting LCS can be used to construct the deformable

body, as long as (1) the segments form a closed curve and

(2) the aforementioned potential flow hypothesis is satis-

fied. Nonetheless, certain combinations of the LCS provide

more information regarding the fluid dynamics than others;

hence, the choice should be made judiciously (see next

section).

Let U1 ¼ r/1 X; tð Þ represent the ambient flow field

surrounding the LCS, where /1 is the velocity potential of

the ambient flow and X is the position vector measured

relative to the laboratory frame of reference. The outward-

facing unit normal to the LCS is denoted n; the position

vector relative to the LCS centroid, x; and the instanta-

neous surface of the LCS, S(x, t) = 0. The velocity potential

that arises due to the presence of the LCS in the flow is

given by

/2 ¼ U2 �UþX �Wþ /d þ /0 ð10Þ

where U2 is the linear velocity of the LCS centroid in the

laboratory frame and X is the angular velocity of the

principal axes of the LCS. The harmonic functions

U;W;/d; and /0 represent, respectively, the translational

Kirchhoff potential, rotational Kirchhoff potential,

deformation potential, and additional potential associated

with the ambient flow. These potentials satisfy the

boundary conditions listed below:

oU
on ¼ njS; oW

on ¼ x� njS; o/d

on ¼ �
oS=ot
rSj j

�

�

�

S
; o/0

on ¼ �U1 � njS
ð11Þ

where each is evaluated on the LCS surface S(t). In

addition, /2 ? 0 as |x| ? ?. The fluid dynamic force F

and moment M (per unit fluid density) acting on the LCS

are given by

F ¼ d

dt

Z

S

/n dS�
Z

S

r/ r/ � nð ÞdSþ 1

2

Z

S

r/ð Þ2n dS

ð12Þ

M ¼ d

dt

Z

S

/x� n dSþ U2

�
Z

S

/n dS�
Z

S

x� U1 r/ � nð ÞdS

þ 1

2

Z

S

r/ð Þ2 x� nð ÞdS ð13Þ

X

Y

-4 -2 0 2 4 6 8 10 12
-4

-2

0

2

4
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Fig. 2 Vortex ring generated by piston-cylinder apparatus. Vortex

ring propagates from left to right. Red curve, forward-time LCS; blue
curve, backward-time LCS; filled contours, vorticity magnitude; black
rectangle, outline of downstream end of cylinder
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where / = /1 + /2. The following sections consider the

application of these governing equations to two common

classes of animal swimming measurements in which we

will assume that ambient flow and LCS rotation are

negligible, i.e. U1 ¼ X ¼ /0 ¼ 0:

2.3.1 Inertial frame; single appendage measurements

When studying the dynamics of single appendages in an

inertial frame, we must account for the combined dynamical

effect of the appendage and the vorticity that it generates.

The LCS captures this by delineating an ‘effective

appendage’ boundary that interacts with irrotational fluid

surrounding the appendage–vortex system. Specifically, the

effective appendage is given by the closed boundary formed

by the intersection of the forward- and backward-time LCS

curves (cf. Figs. 1 and 2). If the deformation of the effective

appendage is small relative to its translation through the

fluid, i.e. /d\\U2 �U; then Eq. 12 reduces to

F ¼ d

dt

Z

S

U2 � 2Uð Þn dS ð14Þ

The balance of this fluid dynamic force and the external

force Fext applied by the animal to the appendage leads to a

temporal change in the momentum of the effective

appendage:

Fþ Fext ¼
d

dt
VLCSU2ð Þ ð15Þ

or, equivalently,

d

dt
VLCS Iþ ALCSð ÞU2ð Þ ¼ Fext ð16Þ

where VLCS is the volume of fluid displaced by the LCS, I

is the identity matrix, and ALCS is the added-mass tensor of

the LCS (i.e. ALCS ¼ �
R

S U � n dS; Lamb 1932). Since the

external force Fext is applied by the animal, an equal and

opposite locomotive force FL is exerted by the fluid on the

animal, i.e. FL = � Fext.

2.3.2 Non-inertial frame; whole animal measurements

It is often necessary to measure animal swimming in a non-

inertial frame; for example, when tracking free-swimming

animals over distances longer than a stationary measure-

ment window will permit. In these cases, the LCS centroid

velocity U2 in Eq. 10 cannot be determined by visual

inspection. However, if a closed curve surrounding the

entire animal body can be constructed from the measured

LCS, then the locomotive force generated at the animal–

fluid interface becomes an internal force in the system and

Eq. 12 reduces to a simplified expression for U2:

d

dt
½VLCS Iþ ALCSð ÞU2 �

Z

S

/dn dS� ¼ 0 ð17Þ

The deformation potential /d can be determined by using a

standard boundary value problem solver (e.g. MATLAB)

with the boundary condition specified in Eq. 11. The

problem then becomes purely kinematic, in which the

animal body velocity Ubody can be deduced from its weighted

contribution to the velocity of the LCS centroid, i.e.

Ubody ¼
U2VLCS � UfluidVfluid

Vbody

ð18Þ

where Vbody is the volume of the animal body (assumed

neutrally buoyant), and the subscript fluid refers to prop-

erties of the fluid enclosed by the LCS.

It is important to note that, unlike the previous section in

which deformation of the effective appendage was

neglected, whole body calculations based primarily on

either the repelling or attracting LCS can have a substantial

contribution from the deformation potential /d in Eq. 17.

This is because the lobular portions of the LCS may be

included in the deformable body in these cases. In the

previous section, the deforming, lobular portions of both

the repelling and attracting LCS were eliminated from the

analysis when the LCS were intersected to determine the

effective appendage boundary.

3 Results

3.1 Bluegill sunfish pectoral fin locomotion

The analysis presented in Sect. 2.3.1 was applied by Peng

et al. (2007) to DPIV measurements of the bluegill sunfish

pectoral fin. The animals were swum in a flume so that they

could be observed in an inertial frame of reference. Since

measurements were taken in a transverse plane, i.e. with

ambient flow normal to the measurement plane, Eq. 16

could be used to deduce the lateral and lift components of

the locomotive force FL (but not the thrust component).

Figure 3 shows a snapshot of the computed forward- and

backward-time FTLE fields and the resulting LCS structure

that comprises the effective appendage boundary. These

FTLE fields are not resolved as sharply as the vortex ring

calculations shown in Fig. 1. This is due to the shorter

integration time |T|, the result of a shorter duration of

available DPIV measurements. Nonetheless, the effective

appendage is reconstructed without much difficulty.
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Figure 4 plots the measured lateral and lift forces

deduced from the vorticity-free analysis. For comparison,

the steady force level determined using the vorticity method

of Drucker and Lauder (1999) is also plotted. The time-

averaged force computed using the vorticity method is

sensitive to the time at which the vorticity field is evaluated

and the vorticity threshold used to identify the spatial extent

of the shed vortex. We selected an instant near the end of the

fin downstroke and included all vorticity above the back-

ground noise level in the calculation. The result is provided

for qualitative comparison with the present vorticity-free

method. As shown in Fig. 4, the present method provides

detailed information regarding the transient fluid dynamic

forces, in addition to the time-averaged dynamics. To be

sure, this particular data set is limited by a lack of mea-

surement data before the start of the fin downstroke at time

t = 0. Hence, at the beginning of the fin motion there is

insufficient data to compute the backward-time FTLE and

the corresponding repelling LCS, which locates the front

boundary of the effective appendage. Since it is not possible

to evaluate the locomotive forces until this portion of the

effective appendage geometry is revealed, the peak force

generation during the early downstroke is not captured in

the analysis and the corresponding time-averaged force

over the downstroke may be underestimated. Nevertheless,

the transient force dynamics that are captured agree with

observations of instantaneous animal body kinematics

(Peng et al. 2007).

3.2 Jellyfish undulatory locomotion

The analysis presented in Sect. 2.3.2 was applied to DPIV

measurements of free-swimming Aurelia aurita medusae

Fig. 3 FTLE fields and LCS for the flow generated by a bluegill sunfish

pectoral fin. a Backward-time FTLE field; b forward-time FTLE field.

Position coordinates are specified in millimeters. c Boundary of the

effective appendage derived from the repelling and attracting LCS.

Solid curves on the left and right show the attracting and repelling LCS,

respectively. Broken curves are splines connecting the LCS. The fin (the

curved feature with high brightness inside the LCS curves) can be seen

embedded inside the effective appendage
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Fig. 4 Measured locomotive forces in a horizontal and b vertical

directions. Time is normalized by the duration of the fin stroke cycle.

Squares: vorticity-free method. Error bars indicate uncertainty from

measurement and evaluation. For comparison, the steady horizontal

and vertical force levels determined using the vorticity method of

Drucker and Lauder (1999) are shown in dashed lines, and the time

average of the instantaneous data over the same interval is given by

the solid horizontal lines. The interval over which the time averages

are taken is indicated by the arrows
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(i.e. jellyfish). This species of jellyfish swims via full body

undulations that create vortex rings of alternating rotational

orientation during the swimming cycle (Dabiri et al. 2005).

The animals were observed in an inertial frame in order to

validate the non-inertial analytical methods. Figure 5

shows a snapshot of the forward-time LCS structure.

Deformation of the lobular portions of the LCS (i.e., the

two elongated lobes) upstream of the animal makes a

substantial contribution to Eq. 17. Figure 6 compares the

measured LCS centroid velocity U2(t) to that predicted by

Eq. 17; the agreement is reasonable, and it appears that the

discrepancies are due to three-dimensional flow effects that

cannot be captured by the two-dimensional DPIV

measurements.

3.3 Validation of the potential flow hypothesis

To test the potential flow hypothesis and associated ana-

lytical method, we analyzed direct numerical simulations

of vortex ring formation by a piston-cylinder apparatus.

Details of the numerical model, which is similar to the

experiment shown in Fig. 2, are described in a separate

study (Shadden et al. 2007). The forward-time FTLE fields

are shown for four frames in Fig. 7. The LCS extracted

from the forward- and backward-time FTLE fields are

plotted in Fig. 8, showing the temporal evolution of the

flow. As in the case of the bluegill sunfish pectoral fin data,

the backward-time LCS structure could not be identified

until a finite time after flow initiation, since no data exists

before that time. In Fig. 9, the total fluid momentum

determined by the present vorticity-free method (i.e. spatial

integration of the fluid potential in Eq. 12) is compared

with a direct evaluation of this quantity from the DNS over

the time interval 0.4TS < t < TS, where TS is the duration of

the piston stroke. The agreement is very good. Since the

numerical data set provides a vorticity field that is well

resolved even near the solid boundaries, we can also

compute the instantaneous first moment of vorticity in the

flow in order to determine the fluid momentum by a vor-

ticity approach (Wu 1981). This result is also close to the

DNS calculation, as expected since the effect of nozzle exit

overpressure, which may not be captured by the vorticity

approach, has decayed by the time t = 0.4TS.

As mentioned previously, the vorticity-free analyses

implemented presently rely on the assumption that there is

no vorticity on or external to the LCS boundary, so that the

shear stresses on the LCS surface are negligible. This

hypothesis can be tested directly based on the measured

velocity field data, by integrating the shear stress tensor s

on the surface S(t) of the LCS and comparing this with the

computed locomotive force FL. The ratio

R

S
s�n dS

FL
is evalu-

ated in Fig. 10 for DPIV measurements of the pectoral fin

Fig. 5 a Shows the forward-

time FTLE field of the flow

around a free-swimming

jellyfish. b Shows the LCS

derived from the FTLE at the

same instant. The image of the

jellyfish is overlayed for

reference

Fig. 6 Velocity of the LCS surrounding a free-swimming jellyfish.

Solid line: directly measured velocity of the LCS; dashed line:

vorticity-free method. Velocity is plotted as the instantaneous velocity

minus the average velocity over the swimming cycle. Time is

normalized by the duration of the swimming cycle
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and the free-swimming jellyfish from the previous sections.

Figure 10 shows that in both cases the shear on the LCS is

small relative to the locomotive force, consistent with the

potential flow hypothesis. The local peak in the pectoral fin

data is attributable to vorticity outside the dorsal edge of

the LCS, as seen in Fig. 3c. This vorticity external to the

LCS causes the potential flow hypothesis to break down

locally. The quantitative effect of non-compact vorticity on

the validity of the potential flow hypothesis is an issue of

ongoing study.

4 Discussion

The ability of the present methods to deduce unsteady fluid

forces and moments makes them a valuable complement to

existing techniques for quantitative studies of animal

swimming. The vorticity-free approach can benefit from

the wealth of theoretical tools developed for the study of

potential flows, such as Hamiltonian formulations for

optimization (e.g. Galper and Miloh 1995). From the per-

spective of an experimentalist, these methods possess the

practical advantage that vorticity dynamics need not be

resolved exactly. Furthermore, Haller (2002) showed that

the geometry and kinematics of the LCS are robust to

localized measurement errors (which will appear in the

computed fluid particle trajectories), whereas the integrals

that must be evaluated in common vorticity formulations

are not.

To be sure, the present approach requires the extraction

of fluid particle trajectories, data that we have derived here

from Eulerian, DPIV data. In principle, it would be more

efficient to extract these trajectories empirically, as in par-

ticle-tracking velocimetry (PTV) techniques. However,

PTV methods are most effective in flows with relatively low

seeding densities, typically at least an order of magnitude

less than DPIV. Computing the FTLE fields would then

require substantial interpolation of the measured fluid par-

ticle trajectories. One potential advantage of this approach,

however, is that three-dimensional PTV can be imple-

mented with substantially greater ease than an equivalent

DPIV technique. Furthermore, PTV has experienced sig-

nificant refinements recently (Pereira et al. 2006; Ouellette

et al. 2006). The extraction of three-dimensional fluid

Fig. 7 Velocity field and the

forward-time FTLE for direct

numerical simulation of a vortex

ring generated by a piston-

cylinder apparatus. The

longitudinal (x) and radial (r)

axes are plotted in meters. The

ridge of highest FTLE values is

shown in red. The cylinder wall

is indicated by the black
horizontal line
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Fig. 8 Temporal evolution of the vortex boundary, shown as solid
lines. The vortex moves from left to right. Dotted line: cylinder wall
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dynamics from animal swimming measurements may be

facilitated by the use PTV within the context of a

Lagrangian, vorticity-free method of analysis.

Perhaps the greatest challenge for animal swimming

measurements lies in quantitative validation of the results.

Fluid dynamic force and moment measurements cannot

usually be validated directly in these cases; at best, they

can be shown consistent with known requirements for

locomotion of a particular animal (e.g. balancing negative

buoyancy) or with measured body kinematics (i.e. linear

and angular position, velocity and acceleration). Simulta-

neous measurements of body and flow kinematics will

ultimately be required in order to confirm the conclusions

of fluid dynamic studies currently being undertaken in the

field.

Finally, we reiterate that the methods developed here are

very general. Immediate applications of this vorticity-free

perspective to animal swimming can be found in studies of

C- and S-starts; labriform, carangiform, and anguilliform

locomotion; and jet propulsion. Animal flight can be

studied under this same paradigm, as can bluff-body flows

and fluid–structure interactions more broadly. The trans-

port properties of LCS have recently been studied within

the context of animal swimming (Franco et al. 2007),

resulting in new physical insights into the coupling of mass

and momentum transport during animal swimming.
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