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We use a dynamical systems approach to identify coherent structures from often
chaotic motions of inertial particles in open flows. We show that particle Lagrangian
coherent structures (pLCS) act as boundaries between regions in which particles have
different kinematics. They provide direct geometric information about the motion
of ensembles of inertial particles, which is helpful to understand their transport. As
an application, we apply the methodology to a planktonic predator–prey system in
which moon jellyfish Aurelia aurita uses its body motion to generate a flow that
transports small plankton such as copepods to its vicinity for feeding. With the flow
field generated by the jellyfish measured experimentally and the dynamics of plankton
described by a modified Maxey–Riley equation, we use the pLCS to identify a capture
region in which prey can be captured by the jellyfish. The properties of the pLCS and
the capture region enable analysis of the effect of several physiological and mechanical
parameters on the predator–prey interaction, such as prey size, escape force, predator
perception, etc. The methods developed here are equally applicable to multiphase and
granular flows, and can be generalized to any other particle equation of motion, e.g.
equations governing the motion of reacting particles or charged particles.

1. Introduction
The advection of finite-size or inertial particles in open, unsteady flow is often

chaotic (e.g. Aref 1984; Wiggins 1992). Compared with ideal (infinitesimal) fluid
tracers that simply follow local flow velocities, the inertia of finite-size particles
makes their motion lag fluid motion. There are additional forces acing on finite-size
particles such as buoyancy, Stokes drag, the added mass, and the Basset–Boussinesq
memory force. In a classic paper, Maxey & Riley (1983) summarized these forces
and introduced the equation of motion for small rigid spherical particles in an
incompressible fluid. A widely used reduced form of the Maxey–Riley equation (with
Basset–Boussinesq memory force and ∇2u terms neglected) is

dv

dt
− 3R

2

Du
Dt

= − A(v − u) +

(
1 − 3R

2

)
g, (1.1)
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with

R =
2ρf

ρf + 2ρp

, A=
R

St
, St =

2

9

(
a

L

)2

Re. (1.2)

Equation (1.1) is made dimensionless with characteristic length scale L, characteristic
velocity U , and characteristic time scale T =L/U . The variable v represents the
velocity of the particle, u that of the fluid, ρp the density of the particle, ρf the
density of the fluid, ν the kinematic viscosity of the fluid, a the radius of the particle,
and g gravity. The particle dynamics depend on three dimensionless parameters: the
mass ratio parameter R, the particle Stokes number St , and the Reynolds number
Re= UL/ν. The size parameter A describes the effect of particle inertia, with the limit
A → ∞ corresponding to infinitesimal fluid tracers (a = 0). The derivative Du/Dt is
taken along the path of an ideal fluid tracer

Du
Dt

=
∂u
∂t

+ (u · ∇)u, (1.3)

whereas the derivative dv/dt is taken along the trajectory of the particle. A detailed
description and discussion of the Maxey–Riley equation can be found in the review
by Michaelides (1997).

The Maxey–Riley equation provides a theoretical tool to study dynamical systems of
inertial particles in fluid flows. Dynamical systems of small inertial particles described
by the Maxey–Riley equation are higher dimensional (2d + 1) than those of ideal
fluid tracers (d + 1) (d is the dimensionality of the flow, see Benczik, Toroczkai & Tel
2003). The motion of an inertial particle in the fluid often differs from that of an ideal
tracer. In fact the Lagrangian trajectories between the two can differ drastically. The
difference not only depends on properties of particles, but also on the characteristics
of flow fields. For example, the distinction between inertial particle trajectories and
fluid trajectories is most significant in those regions where the flow has hyperbolic
stagnation points (Babiano et al. 2000).

Some interesting features of dynamical systems of inertial particles include clustering
and dispersion of particles. For small Stokes number, there exists an invariant
manifold to which inertial particles are asymptotically attracted. They are called
attracting slow manifolds (Haller & Sapsis 2008), to distinguish them from classic
fluid manifolds that attract ideal fluid tracers (Rom-Kedar, Leonard & Wiggins 1990).
The attracting manifolds are very useful in finding particle clustering locations in open
flows. However, knowledge of where the particles come from is equally important
as knowing where the particles go. In other words, it is of interest to derive a
topological map that separates particles into different groups, depending on their later
kinematics.

To achieve this, we use the finite-time Lyapunov exponent (FTLE) to identify geo-
metric separatrices from trajectories of inertial particles. We define these separatrices,
which are called particle Lagrangian coherent structures (pLCS), and show that pLCS
formulate a unique geometry indicating transport of inertial particles in open flows.
The new method enables analysis of transport of inertial particles, thereby extending
previous studies in which FTLE and fluid Lagrangian coherent structures (LCS) were
used to understand fluid transport in chaotic flows (Haller 2002; Shadden, Lekien &
Marsden 2005; Shadden, Dabiri & Marsden 2006; Franco et al. 2007).

As a demonstration, we apply the new method to a marine predator–prey system.
In this system, the predator, moon jellyfish Aurelia aurita, feed on small planktonic
prey such as copepods. The system is unique in that jellyfish use body movements to
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generate flow currents, which induce transport of prey towards the tentacles and oral
arms, where the prey can be captured. We identify a capture region using the concept
of pLCS. Prey inside the region are captured by the jellyfish while prey outside the
region are able to escape. The properties of pLCS also enable the analysis of the
effects of prey size and escape force on the size of capture region.

The paper is organized as follows: § 2 presents an equation of motion modified
from the Maxey–Riley equation to account for the self-propulsion of prey. This
is followed by a presentation of the calculation of FTLE and pLCS from inertial
particle trajectories. Section 3 reports results obtained from the case study of jellyfish
predation. The effects of prey size and escape forces on the capture region are
investigated by comparison with the capture region based on ideal fluid tracers. The
paper concludes with a discussion of the benefits and limitations of the developed
methods and suggestions for potential applications in § 4.

2. Methods
2.1. Flow generation and measurement

In the present work, we study the predation of moon jellyfish Aurelia aurita. These
animals are cruising predators that feed on small plankton. They use periodic
contraction and relaxation of their bells to swim. As the animal moves forward,
the flow induced by body motion also facilitates the transport of prey toward capture
surfaces under the bell. Using digital particle image velocimetry (DPIV), we measured
the flow field generated by five free-swimming Aurelia aurita in a 75 gallon water
tank. Details of the experimental methods were similar to recent studies involving the
same species of animal (Shadden et al. 2006; Franco et al. 2007). DPIV measurements
were collected on the symmetry plane of the animal for several consecutive swimming
cycles.

2.2. Dynamics of prey

Aurelia aurita feed on microcrustaceans, such as copepods. These animals have a
characteristic length of a =1 mm. For simplicity, we neglected their body shape and
considered them as spherical particles. Hence their dynamics could be described
by the Maxey–Riley equation. However, the forces on the right-hand side of the
Maxey–Riley equation only include fluid forces acting on passive particles due to the
background fluid currents and gravity. Small plankton are capable of self-propulsion,
often triggered by perception of a nearby predator. This effect was incorporated in
this study by the addition of a term ae = Fe/m into (1.1), representing the acceleration
rate of prey animals due to the self-generated escape force Fe, with m being the mass
of individual prey. This escape force may be dependent on time and the local flow
characteristics, e.g. local shear stress. Because most microscopic aquatic animals are
neutrally buoyant, we took the mass ratio parameter R in (1.1) equal to 2/3. Therefore
the dynamics of a prey animal can be expressed as

dv

dt
− Du

Dt
= − A(v − u) + ae. (2.1)

Without the escape acceleration term ae, (2.1) is the linearized Maxey–Riley equation
for neutrally buoyant spherical particles. The equation was non-dimensionalized
by length scale L = 5 cm (the radius of the jellyfish) and characteristic velocity
U = 1 cm s−1 (the jellyfish swimming speed). The corresponding Reynolds number
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of the flow Re= 500, and for a prey with size a = 1mm, the particle Stokes number
St = 0.04 and the particle size parameter A= 15.

2.3. Transport of prey

Similar to the method for locating fluid LCS, the FTLE field was calculated from
inertial particle trajectories to determine the pLCS. The FTLE field measures particle
separation rate in the flow. The ridges on FTLE contour plots, indicating local
maxima of separation rate, identify the pLCS.

For a given flow field u(t, x), the velocity of an inertial particle v(t; t0, x0) can be
solved along its trajectory. The notation v(t; t0, x0) denotes the velocity at time t of a
particle starting at point x0 at time t0. Note that the velocity of the flow u is Eulerian,
whereas the velocity of the particle v is Lagrangian. The trajectory of the inertial
particle x(t; t0, x0) is the solution of

ẋ(t; t0, x0) = v(t; t0, x0) (2.2)

with initial conditions

x(t0; t0, x0) = x0, ẋ(t0; t0, x0) = v0, (2.3)

where the overdot denotes a time derivative. The initial velocity of a prey particle v0

was assumed to be equal to the local flow velocity. Together with (2.1), the trajectory
can be calculated by integrating its velocity v(t; t0, x0) over time. A fourth order
Runge–Kutta integration was used to calculate trajectories.

To avoid confusion between particle trajectories and spatial coordinates, the
notation φ is used for particle trajectories and x for spatial coordinates. By following
particle trajectories over a duration of time T after initial time t , we obtain a particle
flow map φt+T

t (x) that takes particles from their position x at initial time t to their
position at time (t + T ).

To locate the pLCS, we compute the FTLE field of the particle flow map. Consider
the trajectories for a slightly perturbed particle at y = x + δx(0) at time t . After a
time interval T , this perturbation becomes

δx(T ) = φt+T
t ( y) − φt+T

t (x) =
dφt+T

t (x)

dx
δx(0) + O(‖δx(0)‖2), (2.4)

where (dφt+T
t (x))/dx is the deformation gradient tensor D, calculated as Dij = dφi/dxj .

By dropping higher-order terms of δx(0) , the magnitude of the perturbation is given
by

‖δx(T )‖ =
√

δx(0) · Δ · δx(0), (2.5)

where

Δ =
dφt+T

t (x)

dx

∗

· dφt+T
t (x)

dx
(2.6)

is the Cauchy–Green deformation tensor. The operator ‘ · ’ indicates the inner vector
product and the superscript ∗ denotes the transpose of a tensor. The magnitude of the
perturbation is maximum when δx(0) is aligned with the eigenvector associated with
the maximum eigenvalue of Δ. That is, if λmax(Δ) is the square root of the maximum
eigenvalue of Δ, then

‖δx(T )‖ = λmax(Δ)‖δx(0)‖. (2.7)
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(a) (b)
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Figure 1. (a) The FTLE field (contour plot) and velocity field (vector plot) at a given time
instant. (b) pLCS for different prey, superimposed over the jellyfish. Solid white: pLCS for ideal
infinitesimal prey; red: pLCS for prey with size a = 1 mm and without escape force; yellow:
pLCS for prey (a = 1 mm) with an escape acceleration (ae = 0.05 m s−2) opposite to local flow
velocity; green: pLCS for prey (a = 1 mm) with an escape acceleration (ae =0.05 m/s−2) normal
to local flow velocity. The capture regions are regions inside pLCS, closed by the imaginary
dashed line on the top. The axis of the jellyfish body is shown as the dash-dot line.

The FTLE, representing the maximum linear growth rate of a small perturbation, is
defined as

σ t+T
t (x) =

1

T
ln

∥∥∥∥δx(T )

δx(0)

∥∥∥∥ =
1

T
ln λmax(Δ). (2.8)

The LCS can be defined as a ridge line of the FTLE. Intuitively, a ridge line is a
curve normal to which the topography is a local maximum. This is readily identified
from the FTLE contour plot. For a precise definition of a ridge line, refer to Shadden
et al. (2005).

In (2.8), the FTLE σ (x) is not explicitly written as a function of the integration
time T because the length of integration time does not affect the location of the
pLCS. However, longer integration time can help determine the pLCS locations more
accurately by better resolving the ridges of local maxima in the FTLE contour plot.
The appropriate length of integration time depends on the particular flow being
analysed, but in practice, the integration time in any pLCS analysis should be chosen
such that the pLCS is clearly identifiable on the FTLE contour plot. The magnitude
of the integration time T in the present study is approximately 4 swimming cycles.

3. Results
First, we consider ideal infinitesimal (a = 0) prey with no mass. They are identical

to ideal fluid tracers. The FTLE field is calculated based on the DPIV measurement
of the flow generated by the jellyfish. Figure 1(a) shows the FTLE field for a jellyfish
at a given time instant. The ridge of the FTLE contour plot is clearly identifiable
as the pLCS, plotted as the solid white line in figure 1(b) around the jellyfish. The
pLCS is a continuous curve that encloses a subumbrellar region in contact with
the sensory apparatus of the animal and finger-like structure above the bell called
‘lobes’ (Shadden et al. 2006). The pLCS is not closed at the top as new lobes are
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continuously being generated. Even with the opening at the top, it is not conceptually
difficult to separate the regions inside and outside the pLCS. The region inside the
pLCS is the capture region, and ideal infinitesimal prey can be sampled and captured
by the animal. Notice that the pLCS is not symmetric on figure 1(b). The most
significant difference is that lobes are not well resolved on the right-hand side of the
jellyfish body axis (the dash-dot line the figure 1). This is an artifact of the DPIV
measurements, in which laser illumination was weaker on the right-hand side of the
animal body (i.e. the laser sheet was introduced from the left). In the following, we
only use the pLCS on the left-hand side of the jellyfish body axis to calculate the size
of the capture region.

The pLCS for ideal infinitesimal prey is used as the baseline and the effect of
prey inertia and escape forces on jellyfish feeding can be studied by comparisons
among the pLCS. First, we study the effect of prey size/inertia on the capture region.
The escape force by prey is not considered here, so ae = 0 in (2.1). We consider
prey size of a = 1 mm, which is the characteristic size of copepods (Strickler 1975).
The corresponding FTLE was calculated and pLCS was identified using the method
described in § 2. The pLCS and capture region are shown in figure 1(b).

We next consider the effects of prey escape forces on the capture region. Some
microplankton, like copepods, can generate momentary acceleration up to 12 m s−2

when escaping predation by power-stroke of their legs (Strickler 1975). To successfully
escape predation, the prey escape reaction should be directional. However, there is
no existing literature demonstrating the directional preference of plankton’s escape
reaction to a predator, if any. To simplify the problem, we assume the escape force
has one of the two different forms: ae = −aeu/u and ae = −aen × u/u (n being a unit
vector normal to the plane). The former represents an escape force with its direction
always opposite to local flow velocity, and the latter one with its direction always
normal to local flow velocity and away from the predator. It is also assumed that
the escape force is persistent, and thus the acceleration has a smaller value, with the
magnitude ae = 0.05 m s−2 (ae = 25 if non-dimensionalized by U 2/L) in both models.
The pLCS are shown in figure 1(b): the yellow curve is the pLCS for prey with escape
force opposite to local flow velocity, and the green curve is the pLCS for prey with
escape force normal to local flow velocity.

Comparing the results plotted in figure 1(b), it is clear that the capture region for
finite-sized prey is smaller than that for ideal infinitesimal prey. Adding an escape
force to the prey can further reduce the area of the capture region. This is also
true for four other animals studied. Comparisons between capture regions for ideal
infinitesimal prey and for prey (a = 1 mm) with an escape acceleration (ae = 0.05 m s−2)
opposite to local flow velocity are plotted for these animals in figure 2. In table 1, the
area and the volume of the capture region are compared to study the effects of prey
inertial and escape force. The area of the capture region is the area inside the pLCS
on the left-hand side of the jellyfish body axis and the volume of the capture region
is calculated based on the left-hand side pLCS assuming that pLCS is axisymmetric.
For each individual animal, the sizes of the capture region area/volume are non-
dimensionalized by that for ideal infinitesimal prey. The average and the standard
deviation of the five animals studied are listed in table 1. The size of the capture
region indicates how effectively prey are captured. Thus it is more difficult for a
jellyfish to capture finite-size prey than ideal, infinitesimal prey. The capability to
generate a directional escape force further enhances prey escape from the predator,
consistent with physical intuition.

The results shown above assumed that the escape response starts at the beginning
of calculation, i.e. the prey constantly exhibits the escape response. However, in
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Prey characteristics Area of capture region Volume of capture region

a =0, ae =0 1 1
a =1 mm, ae =0 0.93±0.04 0.90±0.05
a =1 mm, ae =0.05m s−2 (O) 0.74±0.04 0.64±0.06
a =1 mm, ae =0.05m s−2 (N) 0.78±0.05 0.68±0.07

Table 1. Areas of capture regions for different types of prey, normalized to that of ideal
infinitesimal prey. (O) represents ae opposite to the flow direction and (N) represents ae

normal to the flow direction. The numbers are shown in the form of the average and the
standard deviation from the five animals studied.

2 cm

Figure 2. Capture regions for four additional jellyfish individuals of the same species. White:
pLCS for ideal infinitesimal prey; red: pLCS for prey (a = 1 mm) with escape acceleration
(ae = 0.05 m s−2) opposite to local flow velocity. Animals assume arbitrary swimming directions,
but images are rotated so that the body axes are vertical. Only the half-plane on one side of
the body axis (the dash-dot line) is shown. All images are of the same scale.

reality this is not the case. Studies show that escape reaction is usually inhibited in
the absence of a predator because it requires up to 400 times the normal energetic
expenditure for copepods (Strickler 1975; Fields & Yen 1997). Thus escape reaction
is elicited upon the perception of a measurable fluid mechanical signal in the flow
generated by the predator. The signal can be disturbance in velocity or acceleration,
but the most established signal is flow shear rate. A threshold value for shear rate,
1.5 to 8 s−1, is required to initiate escape reaction for copepods (Fields & Yen 1997).
The contour plot of shear rate of the flow generated by the jellyfish in figure 1 is
shown in figure 3(a). The regions with high shear are in the vicinity of the jellyfish,
which implies that prey might not be able to perceive the disturbance until they
are close to the predator. To study the effect of the threshold value on the escape
from predator, we calculated the pLCS and capture regions for different thresholds
for shear perception τth = 0, 1 s−1, and ∞. Threshold value for shear τth = 0 is
equivalent to a consistent escape response, while τth = ∞ is equivalent to no escape
response. The prey has a size of a = 1 mm with an escape acceleration ae =0.05 m s−2

and opposite to local flow velocity. It is assumed that prey do not initiate escape
response until they perceive the local shear rate higher than the threshold. After the
escape response is initiated, it persists even if the local shear rate drops below the
threshold. The pLCS and capture regions are plotted in figure 3(b): the white curve
is the pLCS for prey with perception threshold τth = 0; the red curve is the pLCS
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Prey characteristics Area of capture region Volume of capture region

τth = ∞ (no response) 1 1
τth = 1 s−1 0.94±0.02 0.91±0.03
τth = 0 0.81±0.04 0.72±0.06

Table 2. Areas of capture regions for prey with different perception threshold values,
normalized with the case of τth = ∞ (no response). The prey has a size of a = 1 mm with
an escape acceleration ae = 0.5 m s−2 opposite to local flow velocity. The numbers are shown
in the form of the average and the standard deviation from the five animals studied.

(a) (b)

Shear (s–1)
2.0

2 cm

capture
region

1.2
0.4

–0.4
–1.2
–2.0

Figure 3. (a) Shear rate of the flow. The position of the jellyfish is given by its surface. (b)
pLCS and capture regions for prey with different perception threshold values. White: τth = 0
(constant escape response); red: τth = 1 s−1; green: τth = ∞ (no escape response). Only the
half-plane on one side of the body axis (the dash-dot line) is shown.

for prey with τth = 1 s−1; and the green curve is the pLCS for prey with τth = ∞.
The sizes of capture regions for prey with different perception threshold are listed in
table 2, normalized with the case of τth = ∞ (no escape response) for the individual
animals. As the threshold value for perception decreases, the size of capture region
also decreases. This is because prey are able to initiate the escape response earlier
if they can perceive the shear rate at a lower level, thus enabling escape from the
predator.

4. Discussion
In this study, a modified Maxey–Riley equation is used to describe the motion

of inertial prey particles in the flow generated by a predator jellyfish. The equation
applies to solid spherical particles with size much smaller than the characteristic
length scale of the flow. For small particles, the effect of the flow field due to particle
motion is restricted to a small area around the particle. This enables us to consider
the flow field as independent of particle motion. In the case study of jellyfish feeding
on copepods, we are able to measure the flow generated by the jellyfish and then
subsequently calculate the motion of prey particles.

With the dynamics of prey particles specified, the study proposes a new method to
study the fluid mechanical basis of jellyfish feeding on planktonic organisms. FTLE
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and pLCS are used to identify a capture region in the flow. By modelling different prey
particles, we found that compared with ideal infinitesimal prey, the capture regions
for prey with inertia and escape force can be significantly smaller. The differences (up
to 26% or more, table 1) are outside the calculation uncertainty (3%), of which the
major part is introduced when extracting pLCS from the FTLE plot (figure 1).

Previous models of jellyfish feeding appeal to a marginal flow mechanism, which
relies on the comparison between prey escape speeds and flow velocities at jellyfish
bell margins (Costello & Colin 1994; Sullivan, Garcia & Klein-MacPhee 1994). Prey
with slow escape speeds are drawn to capture surfaces by flow generated by jellyfish
at their bell margins. In contrast, the present model directly incorporates prey size,
escape forces and perception threshold. The results show that due to inertia, some
prey that would be captured if infinitesimal are not captured by the jellyfish, mostly
those near the boundary of the capture region. This result is consistent with physical
intuition, and it demonstrates that the Lagrangian approach can be used to determine
the scaling of feeding efficacy with prey size, a key determinant of ecological niche.
Specific escape strategies, such as acceleration opposite or normal to the local fluid
flow, and escape response initiation soon after perception of the predator further
aid prey escape. Additional experimental and theoretical studies are required to gain
further insight into the these predator–prey interactions.

We note that the present study is two-dimensional. The measured flow field is a
planar cross-section of a three-dimensional flow, thus the pLCS is the intersection of a
two-dimensional surface with that plane. Nonetheless, the methods described here are
not limited to two-dimensional flow. The Maxey–Riley equation is able to describe
particle motions in three dimensions and the pLCS analysis can also apply to fully
three-dimensional flow. For three-dimensional flows, the pLCS are surfaces rather
than curves and they enclose a capture volume rather than an area. Tables 1 and 2
also list the size of normalized capture volume, assuming the pLCS is axisymmetric.
The differences in capture volume sizes are more pronounced.

The modified Maxey–Riley equation with a forcing term can be used to study
behaviours of small planktonic animals in fluid flows other than those generated by
predators, such as sedimentation flows. Most previous studies on active motion of
microscopic animals assume that the velocity of the animal in a flow is the vector
sum of animal swimming velocity in still fluid and the ambient current velocity
(e.g. Koehl & Reidenbach 2007). The proposed equation of motion incorporates
additional parameters and considers the interaction between fluid and animal on the
force balance, and thus can potentially provide a more accurate way to describe the
dynamics.

More importantly, the pLCS methodology proposed in the present study can
be used to study transport and mixing of particles with any form of equation of
motion. The method is not limited to particle motions described by the Maxey–Riley
equation. It can be generalized to any other particle equation of motion, e.g. equations
governing motions of reacting particles or charged particles. As long as the particle
trajectories can be calculated from their equations of motion, or directly measured
from experiments, pLCS can be calculated from these trajectories. This makes the
method useful for a broad range of fluid mechanics applications, including multiphase
and granular flows.

The authors acknowledge Cabrillo Marine Aquarium (San Pedro, CA) for providing
jellyfish, and funding from the NSF Biological Oceanography Program (OCE-0623475
to J.O.D.).
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