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We present a method for identifying the coherent structures associated with individual Lagrangian

flow trajectories even where only sparse particle trajectory data are available. The method, based

on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated

eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference

trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchi-

cal clustering, the coherent structure of which the reference particle is a member can be identified.

This algorithm is proven successful in identifying coherent structures of varying complexities in

canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the asso-

ciated structure in comparison to the surrounding flow. Although the method is demonstrated here in

the context of fluid flow kinematics, the generality of the approach allows for its potential application

to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene

expression, or social networks. VC 2017 Author(s). All article content, except where otherwise noted,
is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4993862]

In recent years, there has been a proliferation of techniques

that aim to characterize fluid flow kinematics on the basis

of Lagrangian trajectories of collections of tracer particles.

Most of these techniques depend on the presence of tracer

particles that are initially closely spaced, in order to com-

pute local gradients of their trajectories. In many applica-

tions, the requirement of close tracer spacing cannot be

satisfied, especially when the tracers are naturally occur-

ring and their distribution is dictated by the underlying

flow. Moreover, current methods often focus on determina-

tion of the boundaries of coherent sets, whereas in practice

it is often valuable to identify the complete set of trajecto-

ries that are coherent with an individual trajectory of inter-

est. We extend the concept of Coherent Structure Coloring,

an approach based on spectral graph theory, to achieve

identification of the coherent set associated with individual

Lagrangian trajectories. The method does not require a
priori determination of the number of coherent structures

in the flow, nor does it require heuristics regarding the

eigenvalue spectrum corresponding to the generalized

eigenvalue problem. Importantly, although the method is

demonstrated here in the context of fluid flow kinematics,

the generality of the approach allows for its potential

application to other unsupervised clustering problems in

dynamical systems such as neuronal activity, gene expres-

sion, or social networks.

I. INTRODUCTION

The ability to detect regions of coherence in fluid flows

is of interest to many scientific communities. For example,

by identifying groups of fluid particles that move coherently,

it may be possible to characterize how passive scalars like

heat and salt concentration are transported by currents and

eddies in the ocean.1 Because of the underlying interest in

transport phenomena, objective Lagrangian methods, which

are independent of the reference frame, are a logical tool for

addressing these questions. Lagrangian methods for coherent

structure detection have been studied intensively over the

last several decades (see Hadjighasem et al.,2 Allshouse and

Peacock3 for reviews), especially in flow fields that are well

characterized. If full-field velocity data are available, defor-

mation gradient-based techniques are useful. For example,

calculation of the finite time Lyapunov exponent (FTLE)

field can be used to identify the boundaries of fluid regions

that experience minimal mixing with the surrounding

fluid.4,5

However, in many flows of interest, full field velocity

data are unavailable, and we must rely on the advection of a

relatively sparse set of Lagrangian particles to characterize

the flow. This occurs because of an inability to densely seed

the region of interest of the flow, e.g., in oceanic environ-

ments where GPS-enabled drifters or natural seeding is

necessary; and in very large volumetric flow domains to

measure naturally occurring atmospheric flows. In these

cases, the assumptions inherent in the calculation of the

deformation gradient are not valid, especially the ansatz of

initially closely spaced trajectories. In these cases, other

techniques must be used to accurately detect regions of fluid

coherence.6,7

Recently, several approaches to spectral clustering have

emerged to address the problem of coherent structure identi-

fication. In general, these approaches involve building an

adjacency matrix containing information regarding thea)Electronic mail: jodabiri@stanford.edu
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similarity of every pair of particle trajectories.

Eigendecomposition is then used to sort the trajectories

according to their similarity, with the sorting information

that is contained in specific eigenvectors dependent on the

particular method. The spectral clustering technique of

Hadjighasem et al.8 quantifies the similarity of trajectory

pairs based on the mean displacement between the trajecto-

ries. Subsequently, the eigenvectors corresponding to the

eigenvalues below a presumed spectral gap, i.e., the largest

gap in the value between two adjacent eigenvalues, separate

the coherent structures in the flow from the presumed inco-

herent background. Each coherent structure corresponds to a

separate eigenvector. This method allows for detection of an

arbitrary number of structures in the flow, unlike fuzzy c-

means clustering,6 but is dependent on the eigengap heuristic

to determine the number of structures. The location of this

gap can be extremely sensitive to the number of particles

tracked, the initial location of the particles in the flow field,

and any applied sparsification of the adjacency matrix.

Another recently developed spectral graph theory method9

quantifies the relationship between particle trajectories by

their kinematic dissimilarity, a weighted measure of the stan-

dard deviation of the distance between the two trajectories.

This method, which allows for an analog spectrum of coher-

ence instead of a binary distinction between coherent struc-

tures and an incoherent background flow, displays the most

significant dissimilarities between particle trajectories in the

coherent structure coloring (CSC) field.

The CSC method differs from other graph theoretical

methods in the atypical definition of coherence as kinematic

similarity of Lagrangian trajectories regardless of spatial prox-

imity. This unique definition leads to the corresponding

changes to the conventional adjacency matrix and its analysis,

as described in this paper. The more versatile definition of

coherence renders the problem of identifying all of the coher-

ent structures in the flow as ill-posed, making the present

method distinct from, and complementary to, other coherent

structure identification algorithms.6–8,10,11 We show that it is

generally more useful to consider an individual Lagrangian

particle trajectory, and to identify the set of other trajectories

that are coherent with the reference trajectory of interest.

There are several potential advantages of the CSC method,

as it does not require determination of the number of coherent

structures in the flow, either a priori or through the use of an

eigengap heuristic. Also, it facilitates the identification of

coherence among trajectories that remain spatially separated

(e.g., regions that are not simply connected), as long as their

trajectories are kinematically similar. However, Schlueter-

Kuck and Dabiri9 allude only briefly to potential methods for

extracting individual structures from the CSC field.

This paper describes a method that uses the CSC field

and additional information from other eigenvectors of the

spectral decomposition to isolate specific flow structures

associated with individual flow trajectories.

II. METHODS

In the CSC algorithm,9 dissimilarity between two parti-

cle trajectories is represented numerically using a weighted

adjacency matrix A, where aij contains the weight of the

edge connecting particle i and particle j

aij ¼
1

rijT1=2

XT�1

k¼0

ðrij � rijðtkÞÞ2
" #1=2

; (1)

where rij(tk) is the distance between two particles i and j at

time tk, and rij is the average distance between the two fluid

particle trajectories. Conceptually, aij quantifies the standard

deviation of the distance between particle trajectories nor-

malized by their average spacing. The corresponding eigen-

value problem that computes the difference between

dissimilar particles is

LX ¼ kDX; (2)

where

dij ¼
0; i 6¼ jXN

k¼1

aik; i ¼ j;

8>><
>>: (3)

and L¼D � A is the graph Laplacian. In order to maximize

the differences between dissimilar particles, X1¼X is the

eigenvector associated with the maximum eigenvalue, k1 of

this problem, under the constraint that X0DX remains finite.

Each element of X1 assigns that value of CSC to the corre-

sponding fluid particle at the final time of the interval over

which particle trajectories were compared.

While the CSC field highlights the largest dissimilarities

in the flow, other dissimilarities are also present, information

about which is contained in the eigenvectors associated with

the eigenvalues less than k1. We denote these eigenvalues

and eigenvectors, k1> k2> k3…and X1, X2, X3…, respec-

tively. It should be noted that because A is real and symmet-

ric, all k are real, and all X are orthogonal. Due to these

properties, the eigenvectors associated with lesser eigenval-

ues may contain additional, unique information regarding

how to partition the flow to separate dissimilar trajectories.

The quadratic placement algorithm of Hall12 suggests that

the optimal distribution of trajectories in an n-dimensional

space to separate dissimilar trajectories is given by the eigen-

vectors associated with the n largest eigenvalues of the gen-

eralized eigenvalue problem given by Eq. (2).

One way to partition the flow is to examine the distance

from every particle in the flow to a selected reference trajec-

tory in CSC space, or d1ðiÞ ¼ jCSCðiÞ � CSCðref Þj. More

generally, it is also possible to create a weighted distance

metric dwD, in an arbitrary number of dimensions D, where

each element in the distance metric is weighted by a factor

wd associated with the corresponding eigenvalue. Formally

dwDðiÞ ¼
XD

d¼1

wdðXdðiÞ � Xdðref ÞÞ2
 !0:5

: (4)

This reduces to the unweighted distance metric when

wd¼ 1 for all d. The distance metric is analogous to the dif-

fusion distance of Coifman and Lafon13 in that it is a
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representation of the connectivity of a pair of fluid par-

ticles. For comparison to the unweighted distance metric,

we have chosen

wd ¼ ðkd � kDþ1Þ=ðk1 � kDþ1Þð Þ0:5 (5)

in order to weight eigenvectors with larger corresponding

eigenvalues more strongly. Different weights can be used

without loss of generality, and in this analysis we have found

that the unweighted distance metric is effective in isolating

individual coherent structures.

Smaller eigenvalues correspond to less effective solu-

tions to the maximization problem given by Eq. (2); the

corresponding eigenvectors contain less and less useful

information about flow dissimilarities. Therefore, the dis-

tance metric fields corresponding to a specified reference

particle (e.g., distance contour plots generated by interpo-

lation of the eigenspace distances) will reach a plateau,

where increasing the dimensionality of the eigenspace does

not significantly change the distance metric field. Once this

plateau is observed, any smaller eigenvalues and corre-

sponding eigenvectors are relatively unimportant and can

be disregarded.

Once the critical dimensionality of the distance metric

space of interest is determined (i.e., the aforementioned pla-

teau in eigenspace distance versus number of eigenvalues), a

threshold eigenspace distance can be identified within which

the reference particle is coherent with other particles in the

flow. This threshold is identified by using hierarchical clus-

tering to separate the distance metric field into particles

within the coherent structure and those outside of it.

Hierarchical clustering begins by considering every particle

a distinct group and combining the two groups with the most

similar associated distance metric. The larger group is then

assigned a distance metric value that is the average of the

values of the two particles in it, and the next most similar

pair of particles (or particle groups) is subsequently com-

bined. This process is repeated until there are only two

groups remaining, corresponding to the particles within the

coherent structure associated with the selected reference

point and those outside of it.

The application of this algorithm to identify specific

coherent structures is described in Section III.

III. RESULTS

The effectiveness of the aforementioned algorithm for

extracting structures associated with individual flow trajecto-

ries from the CSC field is demonstrated using two example

flows. The unsteady quadruple gyre flow is used to illustrate

the application of this method to detect both vortex cores

and the secondary structures caused by oscillating fluid. A

second flow, the Bickley jet, shows that the algorithm is

capable of detecting vortical structures as well as elongated

jet-like structures in the flow, both of which experience little

mixing with the surrounding fluid, and therefore contribute

to fluid transport, but have significantly different shapes.

This flow is also used to demonstrate the method’s treatment

of incoherent background flow.

A. Quadruple gyre

First, we examine the characteristics of the CSC algo-

rithm using the analytical quadruple gyre flow. This flow is

defined by

dx

dt
¼ �pA sin ðpf Þ cosðpyÞ; (6)

dy

dt
¼ �pA cos ðpf Þ cosðpyÞð2axþ bÞ; (7)

where x and y are the spatial coordinates, t is time, and

a ¼ � sin ðxtÞ; b ¼ 1� 2� sin ðxtÞ; f ¼ ax2 þ bx: (8)

We consider the unsteady case where A¼ 0.1, �¼ 0.1,

and x¼ 2p/10. 3000 particles were artificially seeded in the

domain and advected with the flow. Further details of this

flow can be seen in Schlueter-Kuck and Dabiri.9 Figure 1

shows the eigenvectors associated with the largest eight

eigenvalues of the eigenvalue problem LX ¼ kDX. The con-

tour plot is constructed from instantaneous particle locations

and the corresponding eigenvector associated with the largest

FIG. 1. Unsteady quadruple gyre flow, �¼ 0.1, A¼ 0.1, and x¼ 2p/10, calculated over the time interval T¼ [2.5, 42.5], using 3000 particles. The eight eigen-

vectors, X1–X8, associated with the eight largest eigenvalues, k1–k8 of LX¼ kDX of the unsteady quadruple gyre flow. Black dots show final location of 3000

particles. (a) the CSC field, X1. (b) X2. (c) X3. (d) X4. (e) X5. (f) X6. (g) X7. (h) X8.
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eigenvalue is the CSC field [Fig. 1(a)]. It is clear that the

CSC field and X2 through X5 contain information related to

the coherent structures we expect to see in the flow, namely

the gyre cores and the secondary structures to the left of each

core, while X6 through X8 appears progressively noisier and

contains less useful information.

It is also interesting to note that there is not one structure

associated with each eigenvector, as with other spectral

graph-theoretic methods.8 This is because large edge weights

in the adjacency matrix correspond to pairs of particles that

are very dissimilar, instead of very similar. Additionally,

because the edge weights depend on both the standard

deviation of the particle separation and the magnitude of the

separation, small weights are not necessarily associated with

particles in close proximity. This means that the solution to

the generalized eigenvalue problem is not an attempt to solve

an N-cut problem, as posed by Shi and Malik14 and imple-

mented by Hadjighasem et al.8 to partition fluid flows.

Furthermore, an examination of the eight eigenvectors shown

here shows that a particle in what is commonly considered a

coherent structure (e.g., the upper left vortex core) is not iso-

lated from the rest of the flow in any of the eight eigenvectors

shown, but can be isolated by considering that all of the par-

ticles in that structure have similar values in all eight eigen-

vectors and different values from the rest of the particles in at
least one of the eigenvectors.

We will consider first a reference particle located in the

center of the upper left gyre core, close to the location of the

local maximum in the CSC field. Using the distance metric

given in Eq. (4) and a weighting factor wd¼ 1, the distance

metric relative to that reference point is calculated for D¼ 1

through 8. The resulting interpolated distance metric fields

are shown in Fig. 2, where the reference particle is indicated

by the white dot. It is evident that as the dimensionality of

the eigenspace is increased, the other particles in the struc-

ture containing the reference point, in this case the counter-

clockwise rotating vortex in the upper left corner of the

domain, retain a small eigen-distance from the reference

point, while particles in other structures, including those

with a similar CSC value to the reference point; i.e., the

other three gyre cores, become increasing far away in eigen-

space. As the dimensionality of the eigenspace approaches

eight, the distance-metric field changes very little as the

dimensionality is increased.

We can quantify the eigenspace dimension at which fur-

ther increasing the dimensionality of the eigenspace no lon-

ger causes significant changes in the distance metric field, by

plotting the average slope of the distance metric for every

particle vs. the dimensionality of the eigenspace, given by

the equation

sðDÞ ¼ 1

N

XN

i¼1

dwDðiÞ � dwðDþ1ÞðiÞ; (9)

where N is the total number of particles tracked. This function

is shown in Fig. 3 for both the unweighted distance metric

(wd¼ 1 for all d) in red, and the weighted distance metric,

where wd is given by Eq. (5) in blue. It is clear that beyond a

dimensionality of 6, the contributions to the unweighted dis-

tance metric become negligible. This approach is similar to

finding the elbow in a scree plot for principal component

analysis.15 We have found that the resulting coherent

FIG. 2. The unweighted distance, in eigenspace, to the reference particle indicated by the white dot. Blue dots represent final locations of all other particles in

the flow. (a) one-dimensional eigenspace (D¼ 1). (b) two-dimensional eigenspace (D¼ 2). (c) three-dimensional eigenspace (D¼ 3). (d) four-dimensional

eigenspace (D¼ 4). (e) five-dimensional eigenspace (D¼ 5). (f) six-dimensional eigenspace (D¼ 6). (g) seven-dimensional eigenspace (D¼ 7). (h) eight-

dimensional eigenspace (D¼ 8).

FIG. 3. Analysis of a reference particle in the vortex core of the upper left

quadrant of the quadruple gyre flow: the average slope of the distance to the

reference particle [s(D)] vs. the dimensionality of the eigenspace (D). Red

line is calculated using the unweighted distance metric, where wd¼ 1. Blue

line is calculated using the weighted distance metric, where wd is given by

Eq. (5). Vertical dotted black line indicates the location of the elbow in the

plot, selected for subsequent analysis (D¼ 6).
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structure identified using this method is robust to the chosen

dimensionality of the eigenspace.

In order to determine the separation between the par-

ticles inside the same structure as the reference point from

those outside, agglomerative hierarchical clustering is used

to separate the fluid particles into two groups, as explained

in Sec. II above. The group containing the reference particle

before the last binary combination of the hierarchical cluster-

ing comprises particles inside the same coherent structure as

the reference particle. The results of this clustering are

shown in Fig. 4. It is clear that the thresholding algorithm

using a multi-dimensional eigen-distance from a specified

reference point is able to isolate the points inside the upper

left vortex, and its boundary aligns with a region of locally

high gradients in the CSC field [Fig. 1(a)], as well as the

gyre core identified in the FTLE field using 65 000 particles

[Fig. 4(b)].

This process can be applied to any choice of reference

trajectory. Generally, reference points of interest will be

local maxima or minima in the CSC field, but this is not

always the case. For example, from the CSC field, it is clear

that there are relatively large regions of the flow containing

particles with a relatively constant value of coloring near

CSC¼ 2.5� 10�4 [i.e., yellow regions in Fig. 1(a)]. These

regions are concentrated to the left of the gyre cores. To

investigate the presence of large scale structures correspond-

ing to these particles, we choose a reference particle in the

middle of this region in the upper left quadrant, indicated by

the white dot in Fig. 5(a). The plot of the mean slope of the

distance metric vs. dimensionality of the eigenspace (not

shown) indicates that the eigenspace with dimensionality

nine should be sufficient for ensuring a plateau in the

distance-metric field. Using the CSC field and subsequent

8 eigenvectors, the unweighted distance-metric field for

9-dimensional eigenspace is calculated, and hierarchical clus-

tering is used to identify particles in the same coherent struc-

ture as the reference particle, as seen in Fig. 5(a). It is

significant that the particles inside this structure are consistent

with the boundary of the corresponding structure in the dou-

ble gyre flow analysis of Allshouse and Peacock3 using the

fuzzy c-means clustering algorithm, where it was necessary

to prescribe the total number of coherent structures a priori.
Another point of interest in this CSC field is one with a

large negative CSC value. A point above the bottom right

gyre core was selected, and is indicated by the white dot in

Fig. 5(b). As shown in a previous analysis,9 this particle and

others with large negative CSC values have trajectories that

are characterized by switching quadrants in the time domain

of interest. Using the aforementioned techniques, the eight-

dimensional eigenspace is found to be appropriate for

examination of this structure. The hierarchical clustering

approach identifies a connected region of particles above the

lower right gyre core with a few particles that are not con-

nected (but still considered coherent), shown by red dots in

Fig. 5(b).

B. Bickley jet

The Bickley jet, another analytical example, is frequently

used as a model of zonal jets in the Earth’s atmosphere.16 It

is a quasi-periodic flow comprising a spatially undulatory jet

with counter-rotating vortices above and below. Here, we use

the Bickley jet to show the success of this method for more

complex flows and lower particle densities. The flow is

described by the stream function w ¼ w0þw1, where

w0 ¼ c3y� UL tanh y=Lð Þ; (10)

w1 ¼ UL sech2 y=Lð Þ
X3

n¼1

�n cos kn x� rntð Þð Þ: (11)

We use similar values of the parameters as in

Hadjighasem et al.:8 U¼ 62.66 ms�1, L¼ 1770 km, kn¼ 2n/r0,

c¼ [0.1446 U, 0.205 U, 0.461 U], r¼ c – c(3), and �¼ [0.0075,

0.15, 0.3], and the flow is computed on the interval x¼ [0,

20� 106] m, y¼ [–3� 106, 3� 106] m, over the time interval

t¼ [0, 40] days, divided into 601 discrete time steps. The flow

was considered periodic in x. For calculation of the CSC, 300

particles were initialized randomly in the domain and advected

with the flow. The particles were followed over the entire time

interval, even if they left the domain, analogous to how ocean

drifters are tracked.

As with the quadruple gyre, the CSC field and subse-

quent eigenvectors can be used to identify coherent struc-

tures associated with individual particles in the flow field.

The CSC field for the Bickley jet seeded with 300 particles

can be found in Schlueter-Kuck and Dabiri.9 The CSC field

FIG. 4. (a) Analysis of a reference particle in the vortex core of the upper

left quadrant of the quadruple gyre flow. Dots indicate final particle posi-

tions: white dot indicates the chosen reference point, red dots are the par-

ticles that have been identified as within the coherent structure associated

with the reference point, and blue dots indicate particles outside of that

structure. The underlying field is the 6D unweighted distance metric field.

(b) FTLE field calculated using 65 000 particles.

FIG. 5. (a) Analysis of a reference particle to the left of the vortex core of

the upper left quadrant of the quadruple gyre flow. The underlying field is

the 9D unweighted distance metric field. (b) Analysis of a reference particle

above the vortex core of the lower right quadrant of the quadruple gyre flow.

The underlying field is the 8D unweighted distance metric field. Dots indi-

cate final particle positions: white dot indicates the chosen reference point,

red dots are the particles that have been identified as within the coherent

structure associated with the reference point, and blue dots indicate particles

outside of that structure.
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identifies a meandering jet flanked above and below by coun-

ter rotating vortices. Several reference points in the flow

were analyzed, and the resulting coherent structures associ-

ated with these points are explained and visualized here. The

first reference point of interest is located near the local maxi-

mum in the CSC field in the counterclockwise rotating

vortex in the upper left of the domain, as indicated by the

white dot in Fig. 6(a). Using analysis similar to that per-

formed for the quadgyre, we determined that the six eigen-

vectors associated with the largest six eigenvalues of the

generalized eigenvalue problem were sufficient for analysis

in this case, using the plot of mean slope vs. dimensionality

of the eigenspace (not shown). Using hierarchical clustering

to group the six-dimensional eigenspace into two clusters,

the upper left vortex core was isolated from the rest of the

flow. This is illustrated in Fig. 6(a), where the reference

point is white, the other particles contained in the coherent

structure with the reference point are in red, and the points

outside of the structure are black. The dots are overlaid on

the CSC field for the Bickley jet calculated using 300 tracer

particles for comparison. Also shown in this figure are the

full trajectories of the particles identified by this algorithm as

within the structure associated with the reference point,

given by the gray lines. It is evident that all of these trajecto-

ries remain tightly entwined throughout the time domain.

Several black particles appear to be within the domain

encompassed by the trajectories; this is due to the unsteadi-

ness of the flow which causes the vortex to oscillate slightly

left to right in the chosen reference frame.

The same algorithm can be applied to a reference point

in the jet, as shown in Fig. 6(b). In this case, the distance to

the reference point in three-dimensional eigenspace was

examined. It is evident from Fig. 6(b) that this algorithm

clearly identifies the jet as a coherent structure in the flow.

This is significant because the jet does not fulfill many of the

requirements of a coherent structure under other traditional

analysis techniques; it is not convex or nearly convex, and

because the jet spans the full domain of the flow, many of the

particles remain very far apart from each other. However,

over the time interval of the flow under analysis, the particles

in the jet remain distinct from the particles in the surrounding

fluid. As a result, this structure could potentially be very good

at transporting scalar quantities. The Coherent Structure

Coloring algorithm admits the jet as a coherent structure even

though other algorithms would miss it.

Finally, structure identification can be used to analyze a

reference point in the background flow. The results of this

investigation are shown in Fig. 7(b), in which a 12-dimensional

eigenspace distance was considered [see Fig. 7(a)]. In this case,

the hierarchical clustering algorithm identified 298 of the 299

additional particles (in red) as belonging to a coherent structure

associated with the reference point (in white). There are several

indications that the reference particle in this case is not part of

any coherent structure. First, Figs. 6(a) and 6(b) have identi-

fied structures that do not contain the current reference point

in the background flow, while the analysis of the particle in

the background flow admits almost all particles into the struc-

ture associated with it. True coherency should be commuta-

tive. Additionally, a comparison of the mean slope versus

dimensionality of the eigenspace for a reference particle in

the upper left vortex of the quadgyre flow (shown in Fig. 3),

and a reference point in the background flow of the Bickley

jet [shown in Fig. 7(a)] provides other indications. For the

quadgyre vortex analysis, the “elbow” in this plot is apparent,

and it is straightforward to determine the dimensionality of

the eigenspace that is appropriate for analysis (6D). However,

FIG. 6. (a) Analysis of a reference particle in the vortex core of the upper left vortex of the Bickley jet flow. (b) Analysis of a reference particle in the jet. Dots

indicate final particle positions: white dot indicates the chosen reference point, red dots are the particles that have been identified as within the coherent struc-

ture associated with the reference point, and black dots indicate particles outside of that structure. The underlying field is the CSC field calculated using 300

particles. Gray lines indicate the full trajectories of the particles inside the coherent structure associated with the reference point (white and red particles).

FIG. 7. Analysis of a reference particle in the background flow. (a) the average slope of the distance to the reference particle [s(D)] vs. the dimensionality of

the eigenspace (D). Red line is calculated using the unweighted distance metric, where wd¼ 1. Blue line is calculated using the weighted distance metric,

where wd is given by Eq. (5). Vertical dotted black line indicates the location of the elbow in the plot, selected for subsequent analysis (D¼ 12). (b) Dots indi-

cate final particle positions: white dot indicates the chosen reference point, red dots are the particles that have been identified as within the coherent structure

associated with the reference point, and black dots indicate particles outside of that structure. The underlying field is the CSC field calculated using 300

particles.
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for the particle in the background flow, there is no clear limit

after which subsequent eigenvectors can be ignored, even up

to 100-dimensional eigenspace.

IV. CONCLUSIONS

Through the use of two analytical flows, we have shown

an effective method for extracting coherent structures by

using the CSC field and subsequent eigenvectors and eigen-

values of the generalized eigenvalue problem LX¼ kDX.

This method involves selecting a Lagrangian particle trajec-

tory of interest in the flow and calculating a weighted dis-

tance metric in multi-dimensional eigenspace to threshold

the flow (e.g., using agglomerative hierarchical clustering).

These threshold values are shown to effectively separate

coherent structures from the background flow, and the

boundaries of these structures are consistent with regions

where the gradients in the CSC field are high. This method is

shown to be robust to the size and shape of the structures

being identified, and allows for a more versatile definition of

coherence than is generally allowed by other methods. The

CSC field can inform reference point selection, with regions

of local maxima and minima in the CSC field yielding good

candidates for flow trajectories associated with dominant

flow structures.

It is important to emphasize that this approach is effec-

tive for identifying structures associated with individual flow

trajectories, but is not intended to identify the full set of

coherent structures in a flow, as is a common goal with other

clustering and spectral graph theory methods.6,8,11

Application of the method described here to the full set of

Lagrangian trajectories could potentially be used to identify

the full set of coherent structures associated with those tra-

jectories. The anticipated commutative property of the

coherency relationships might be leveraged to achieve effi-

cient computation of coherent sets.

Although the method is applied here to cluster tracer

particles in fluid flows, the generality of the approach allows

for its potential application to other unsupervised clustering

problems in dynamical systems such as neuronal activity,

gene expression, or social networks. In these latter cases, the

only difference from the present application is that the cur-

rent kinematic trajectory description (i.e., tracer position ver-

sus time) is replaced with other descriptions that facilitate

analogous calculations of dissimilarity among the trajecto-

ries, e.g., action potential versus time for a collection of

neurons; expression versus gene locus in a microarray; or

agent behavior in a social community.

A MATLAB implementation of the CSC algorithm is

available for free download at http://dabirilab.com/software.
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