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Lagrangian analysis of fluid transport in empirical vortex ring flows
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In this paper we apply dynamical systems analyses and computational tools to fluid transport in
empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings
generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and
detrainment that are consistent with previous theoretical and numerical studies. In addition, the
vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the
framework of dynamical systems to elucidate similar lobe dynamics in a naturally occurring
biological flow. For the mechanically generated rings, a comparison of the net entrainment rate
based on the present methods with a previous Eulerian analysis shows good correspondence.
However, the current Lagrangian framework is more effective than previous analyses in capturing
the transport geometry, especially when the flow becomes more unsteady, as in the case of the
free-swimming jellyfish. Extensions of these results to more complex flow geometries is
suggested. © 2006 American Institute of Physics. �DOI: 10.1063/1.2189885�
I. INTRODUCTION

A. Overview

The kinematic flow structure of two empirically mea-
sured, unsteady vortex flows is studied using dynamical sys-
tems analyses. In particular, entrainment and detrainment of
fluid is examined. The first flow considered is that of a
propagating vortex ring and the second is that of the flow
surrounding a free-swimming Aurelia aurita jellyfish. As we
explain in more detail later, examples like the jellyfish show
that there is a need to extend previous tools, which relied on
the use of lobe dynamics that are revealed in Poincaré sec-
tions in periodic or near periodic Eulerian velocity fields, to
a fully unsteady context. Our purpose in this paper is to carry
out this extension by showing that the computation of La-
grangian coherent structures �LCS� reveals time-dependent
structures in the fully unsteady case, which play the role of
heteroclinic lobe structures in the periodic case.

B. History of lobe dynamics associated to vortex
rings

The study of vortex rings has a long history and is re-
viewed in the paper by Shariff and Leonard.1 Particularly
noteworthy in that work, and in Refs. 2 and 3, is the charac-
terization of entrainment and detrainment through lobe dy-
namics, which is reviewed in Sec. II A. Motivated by the
work of Leonard, Rom-Kedar, and Wiggins,4 Shariff and co-
workers show, using theoretical and numerical analyses, the
occurrence of heteroclinic tangles of the stable and unstable
manifolds of the front and rear stagnation points in a

5
Poincaré section of a model vortex ring. The Poincaré sec-
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tion was constructed from the periodic motion produced by
the vortex model’s characteristic frequency, which corre-
sponded to the rotation of its elliptical core. The evolution of
the associated manifolds into lobes was shown to govern the
entrainment and detrainment of fluid from the vortex ring. In
addition, the computed flow geometry agreed qualitatively
with smoke6 and schlieren7 visualizations, as well as previ-
ous theoretical and numerical observations of spike forma-
tion behind vortex rings.8,9

Rom-Kedar and co-workers10,11 offered a more refined
understanding of the role of lobe formation in the
entrainment/detrainment processes. The analytic oscillating
vortex pair studied in Ref. 11 was given by a stream function
of the form

��x,y,t� = �0�x,y� + ��1�x,y,t� ,

where �0�x ,y� defines the steady flow of counter-rotating
point vortices and �1�x ,y , t� is a time-periodic perturbation
scaled by the strain rate amplitude, �. Rom-Kedar et al.,
proved the existence of lobe dynamics �and the associated
horseshoe map�, and also developed estimates of the flux rate
into and out of the vortex neighborhood, and performed a
detailed study of residence times of particles in, or near, the
vortex pair. Krasny and Nitsche12 went beyond the case of a
strictly periodic velocity field and used point-vortex simula-
tions to show that for vortex pairs that exhibit a well-defined
fundamental oscillation frequency, this frequency can be
used to construct Poincaré sections, which display the ge-
neric chaotic features, including the heteroclinic tangle ge-
ometry, found in the works of Shariff et al. and Rom-Kedar

13
et al. The work of Carnevale and Kloosterziel demon-
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strated lobe shedding from dye visualizations of vortices pro-
duced from rotating tank experiments and attributed these
lobes to the same dynamical processes studied by Rom-
Kedar et al.,11 and made qualitative comparisons of the vi-
sualizations with their own numerical simulations.

C. Treating fully aperiodic flows

What separates the work presented here on vortex ring
entrainment and detrainment from these past studies is the
ability to compute the explicit geometry of the time-
dependent structures that correspond to heteroclinic tangles
in the periodic case, from empirical data of aperiodic vortex
propagation.

The second flow considered in this paper is that sur-
rounding a live, free-swimming Aurelia aurita jellyfish. Al-
though previous qualitative studies have indicated that these
animals form vortex rings during their swimming and feed-
ing behaviors,14 there were no quantitative measurements of
the associated flow velocity field available up until now. Us-
ing quantitative visualization techniques such as digital par-
ticle image velocimetry �DPIV15,16�, it is now possible to
obtain detailed measurements of the velocity field of such
complex fluid flows.

While there is an obvious �approximate� periodicity as-
sociated with the usual motion of the jellyfish itself, there is
no clear periodic structure in the Eulerian velocity field of
the fluid surrounding the animal. While propagating vortex
rings have, arguably, an approximate periodicity in their Eu-
lerian velocity fields due to departures from the steady Hill
or Norbury family of vortices �see Sec. II A for a further
discussion�, that does not seem to be the case with jellyfish
flows. In addition, the flow is not a small perturbation of an
analytically known vortex flow, so perturbation methods do
not appear to be the right tool for these types of problems. Of
course jellyfish and other flows �for example, some cardio-
vascular flows17 and microfluidic flows as well18,19� are even
more complex as the animal undergoes turning and acceler-
ating maneuvers and we wish to have a tool capable of ana-
lyzing such situations as well.

As we have indicated, the theoretical and numerical
studies mentioned previously have been facilitated by time
periodicity �or aperiodicity with a dominant frequency12�;
empirical vortex ring flows such as those in naturally occur-
ring biological systems will often be fully aperiodic. Another
complication is that in such fully aperiodic cases, there are
not always obvious equilibrium points �or other invariant
structures� on which to “hang” the invariant manifolds.
Hence, in these cases it is not obvious whether lobe
dynamics—if they occur at all—will manifest themselves in
the same manner as in the aforementioned theoretical and
numerical studies. A resolution to this question is an impor-
tant step toward improving our understanding of biological
fluid transport, thereby enabling therapies for malfunction
�e.g., cardiovascular flows20� and the realization of bio-
inspired engineering designs �e.g., bio-inspired transporta-

tion systems�.
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D. Objective of the paper

The objective is to apply methods of quantitative visual-
ization, especially DPIV, to analyze empirical vortex ring
flows in a Lagrangian dynamical systems framework. Using
the concept of Lagrangian coherent structures �LCS21–25�,
the measured flows are examined to deduce lobe dynamics
and their effect on entrainment and detrainment. Both a me-
chanical piston-cylinder vortex ring generator and live, free-
swimming Aurelia aurita jellyfish are examined to compare
the results of quasiperiodic flows previously examined to
more complex biological flows of practical importance.

Although previous empirical studies have combined
quantitative imaging and concepts from dynamical systems
to analyze Lagrangian fluid transport,26–28 the goal here is to
examine the specific phenomena of lobe formation and fluid
transport in empirical vortex ring flows. The coherent vortex
ring structures examined here are important both for their
ubiquitous occurrence in biological flows and for the fact
that, as declared by Saffman,29 the vortex ring “exemplifies
the whole range of problems of vortex motion.”

E. Outline

In Sec. II we review the role of lobe dynamics in the
entrainment/detrainment of fluid to/from vortex rings and the
methods used to extract this geometry from the empirical
data. Section III describes the experimental methods used to
measure the vortex ring flows generated by the mechanical
piston-cylinder apparatus and the free-swimming jellyfish. In
Sec. IV we present an analysis of the empirical vortex ring
flows. In that section, a quantitative comparison is made with
an Eulerian analysis of isolated vortex rings.30 We conclude
the paper in Sec. V with a discussion of the possible exten-
sions of these results to more complex flows in nature and
technology.

II. ANALYTICAL METHODS

A. Lobe dynamics

In this section we review, for the reader’s convenience,
lobe dynamics and its role in entrainment and detrainment in
vortex rings; for more information about the fundamental
theory; see Refs. 2 and 11. Henceforth, the transport of fluid
particles is given a kinematic description, which can be sum-
marized by the ordinary differential equation,

ẋ�t� = v�x�t�,t� ,

where v�x , t� denotes the Eulerian velocity field of the fluid,
x�t� denotes the trajectory of a fluid particle, and t denotes
time. For the current studies, v�x�t� , t� is obtained from
DPIV, as described in Sec. III.

Figure 1 shows streamlines of Hill’s spherical vortex.31

The velocity field is time independent so that these stream-
lines represent fluid trajectories. Point A denotes the �hyper-
bolic� stagnation point in what we will consider the front of
the vortex and point B denotes the �hyperbolic� stagnation
point on the rear of the vortex. The stable manifolds of point

B are the trajectories that asymptote to point B in forward
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time and, in this case, coincide with the unstable manifolds
of stagnation point A, i.e., the trajectories that asymptote to
A as t→−�. Such heteroclinic trajectories, which connect
two stagnation points, are often called separatrices because
they separate dynamically distinct regions in the flow. The
vortex ring exemplifies this standard paradigm since these
trajectories separate the circulating fluid from the irrotational
flow that passes around the ring. Therefore, it is reasonable
to define the boundary of the vortex ring as the union of
these trajectories and the associated stagnation points.

It is well known that heteroclinic connections in time-
independent systems are typically broken by the introduction
of time-periodic perturbations.1–3,10,11,32,33 For such systems
the velocity field v is time dependent, albeit periodic. Typi-
cally, time-periodic systems are viewed as time-independent
systems by looking at the evolution at fixed intervals of time,
equal to the period of v; that is, via a Poincaré section. The
stagnation points A and B in the unperturbed system typi-
cally remain fixed points �perhaps slightly perturbed in posi-
tion� in the Poincaré section. However, the heteroclinic con-
nection will often break and transversely intersect �in fact, in
this special case one can prove that the manifolds are infi-
nitely long and an infinite number of transverse intersections
occur�.

Such behavior is illustrated in Fig. 2 �see also Refs. 2, 3,
10, and 11�. The unstable manifold of point A is depicted by
the solid line and the stable manifold of point B is depicted
by the dashed line. Notice that each manifold loops progres-
sively back and forth as it approaches the other fixed point.
To keep the illustration from becoming convoluted, only part
of each manifold is shown in Fig. 2. The intersection of these
manifolds creates regions called lobes. Each manifold is in-

FIG. 1. Streamlines of Hill’s spherical vortex.

FIG. 2. Cartoon of the heteroclinic tangle of the upper unstable and stable

manifolds of the front and rear stagnation points.
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variant, meaning that fluid particles do not cross these
curves, or in fluid mechanics terminology, they are material
curves. Therefore the lobes trap fluid that is confined to re-
main in the lobe as time evolves. The motion of these lobes
can be quite predictable, which can help elucidate the trans-
port and mixing processes.

Vortex ring generation in a real fluid typically results in
more oblate structures than Hill’s spherical vortex �see Ref.
34 for an exception�. In general, the shape of the vortex ring
will depend on the distribution of vorticity that is delivered
by the vortex generator. Although this distribution is usually
not linear with radial position, as in Hill’s spherical vortex,
and the Norbury vortex family more broadly,35 the flow to-
pology in real vortex rings is similar. Therefore, in empirical
flows, we might expect the appearance of patterns similar to
those observed in previous theoretical and numerical
studies,2,3,8–12 as depicted in Fig. 3. Again the unstable mani-
folds are given by the solid lines while the stable manifolds
are depicted by the dashed lines.

To understand how fluid is transported into and out of
the vortex ring, we must first define the vortex interior. There
are natural intersection points of the stable and unstable
manifolds that can be used.2,3,11 An X has been placed over
these intersection points in Fig. 3. The interior of the vortex
is then given by the intersection of the volumes enclosed by
the unstable and stable manifolds, which is shown by the
shaded region of Fig. 3. Since the stable and unstable mani-
folds given in Fig. 3 are invariant, particles on one side of a
manifold must remain on that side when advected. The fluid
in the interior of the shaded region is the recirculating flow.
However, since there is entrainment and detrainment we
know that some fluid outside the vortex will end up in the
interior and vice versa; we next review how this occurs.

Lobe A, in Fig. 4�a�, is nominally outside the vortex �if
one likes, the lobe below A can be taken, and so on�. As
shown by Shariff et al.,2,3 if we advect this lobe by the flow,
it will continuously deform into a lobe similar to lobe B �or
gets mapped to lobe B by the Poincaré map�. Further evolu-
tion by the flow will continue to deform this lobe into lobes
analogous to C, D, and then E. We have thus taken a lobe
that is initially located outside the vortex and shown how it is
advected, or entrained, inside of the vortex. To summarize, it

FIG. 3. Cartoon of heteroclinic intersections for a perturbed elliptical vor-
tex. The interior of the vortex is given by the shaded region.
is the deformation of these manifolds over time, which
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causes the entrainment, not fluid crossing these manifolds.
Similarly, Fig. 4�b� shows how the detrainment of fluid

from lobes initially inside the vortex to lobes outside the
vortex can occur. Lobe A continually deforms into a lobe
analogous to lobe E as time evolves. As time progresses, the
lobes become narrower and longer, and for the case of the
detrained lobes, they form thin filaments behind the vortex.
As mentioned previously, these detrained spikes have been
noticed in a variety of previous works.2,3,8,9,11–13

Neither stable nor unstable manifolds can self-intersect.
Consistent with this impossibility of self-intersections, the
lobes within the vortex will begin to wrap �fold� around the
interior of the vortex, as shown by the thin lobe formed from
the unstable manifold in Figs. 3 and 4. As these lobes be-
come thinner and longer, they spiral farther into the interior
of the vortex. A parcel of particles on either side of the stable
manifold will be stretched apart as it approaches the rear,
hyperbolic point B and it will also align with the long loops
or filaments formed by the unstable manifold. This stretching
and folding of fluid parcels is the distinguishing trait of cha-
otic mixing.36 From these figures it should also be apparent
that these entrained lobes will eventually intersect lobes that
are detrained. Such secondary intersections explain how
fluid that was once entrained can be later detrained from the
vortex; see Ref. 11 for a further discussion.

Although the existence of the manifolds shown in Figs. 3
and 4 has been proven for near-integrable or quasiperiodic
model vortex rings, and given as an explanation for the lobe
shedding seen in dye visualizations of experimentally pro-
duced flows, analytic techniques have not previously been
used to obtain the detailed lobe dynamics structure in empiri-
cal vortex ring flows. Such an analysis is important, for ex-
ample, to be able to quantify transport rates, especially for
engineering or biological applications. Relying on techniques
for locating hyperbolic manifolds in aperiodic systems, we
compute below the exact lobe dynamics structure in the vor-
tex ring flows created by a mechanical vortex generator and
free-swimming jellyfish. In the next section we overview the
use of finite-time Lyapunov exponent �FTLE� fields for lo-
cating these structures.

B. Lagrangian coherent structures

In a series of papers,21–24,37,38 Haller and co-workers
give refined versions of necessary and sufficient conditions
for the existence of “finite-time hyperbolic manifolds” in

FIG. 4. Panel �a� illustrates the process of vortex ring fluid entrainment;
panel �b� illustrates the process of fluid detrainment from the vortex ring.
aperiodic flows, which are analogous to the traditional in-
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variant manifolds that are defined32 for time-independent, or
time-periodic, systems. These “finite-time hyperbolic mani-
folds” are referred to as Lagrangian coherent structures
�LCS�. Those papers also point out the strong correspon-
dence between the LCS defined from Haller’s criteria and
LCS obtained from finite-time Lyapunov exponent �FTLE�
fields. In particular, Haller24 notes that the FTLE fields admit
ridges along the locally strongest hyperbolic lines, a notion
that is studied further in Ref. 25. While other methods exist
for locating hyperbolic trajectories in aperiodic velocity
fields, our experience is that FTLE fields offer a particularly
practical and robust method that is relatively straightforward
to implement. The papers of Wiggins39 and Jones and
Winkler40 review some other existing methods that have
been developed to locate finite-time hyperbolic structures,
and their application to flows representative of those found in
geophysical fluid dynamics. See also Refs. 41 and 42 for
other interesting studies of related phenomena in geophysical
flows.

Finite-time Lyapunov exponent fields

The FTLE field measures, near a given point and at a
given time, the maximum exponential divergence of nearby
trajectories over a finite time-interval. Since the FTLE is
derived from fluid trajectories, it is thought of as a Lagrang-
ian quantity �although its advection properties are not
obvious25�. FTLE fields offer a convenient way to reveal
transport barriers in the flow, even for systems with general
time dependence and that are perhaps defined only over a
finite interval of time.22,24,25,43–46 Finite-time analysis is im-
portant in the study of both numerically and empirically gen-
erated datasets of aperiodic flows, such as those acquired
during the analysis of engineering or biological fluid trans-
port systems. Furthermore, the FTLE is independent of the
reference frame.

Let �t
t+T :x�t��x�t+T� denote the flow map, which

maps fluid particles from their initial location at time t to
their location at time t+T. The FTLE is given by

�t
T�x� =

1

�T�
ln�d�t

t+T�x�
dx

� , �1�

and measures the linearized �maximum� exponential growth
rate over the interval T of trajectories starting near point x at
time t. In �1�, the norm is tacitly taken to be the induced L2

norm, the “spectral norm.” Additionally, �T� is used instead of
T because computing the FTLE for T�0 and T�0 produces
LCS akin to stable and unstable manifolds, respectively, and
thus the definition facilitates forward and backward time
computations. For instance, two points straddling a stable
manifold of a hyperbolic point typically separate much faster
than other arbitrary particle pairs due to the exponential di-
vergence they experience as they approach the hyperbolic
point.47 Likewise, two points straddling an unstable manifold
will similarly have more pronounced separation than other
pairs of points when advected backward in time. This is
�heuristically� why ridges of high FTLE correspond to

stable/unstable manifolds in autonomous or periodic sys-
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tems, or more generally attracting LCS and repelling LCS in
aperiodic flows.

The integration length �T� is chosen according to the par-
ticular flow being analyzed. In general, longer integration
times help reveal more of the LCS, such that as the integra-
tion time increases, the LCS grows in length. However prac-
tical issues typically bound the size of �T� that can be con-
sidered, such as the temporal length or spatial domain limits
of the numerically or empirically generated dataset.25 The
use of FTLE fields to locate LCS will become clearer in Sec.
IV, which presents the results. In the next section we address
the experimental methods used to obtain the velocity fields
of the mechanically generated vortex rings and the flow
about the Aurelia aurita jellyfish.

III. EXPERIMENTAL METHODS

A. Mechanically generated vortex rings

Vortex rings were generated in the laboratory from the
methods described in Dabiri and Gharib.30 A piston-cylinder
apparatus was submerged in a water tank and driven by a
constant-head flow source ��p=8.2 kPa�. The device created
vortex rings by impulsively ejecting a jet of fluid with
length-to-diameter ratio L /D=2 into the surrounding quies-
cent fluid. All of the fluid ejected during the vortex formation
process created a single vortex ring, since the fluid jet length-
to-diameter ratio was kept well below L /D=4, the dimen-
sionless time after which vortex ring pinch-off ensues.48 Af-
ter the formation process, the vortex ring subsequently
propagated downstream under its self-induced velocity.

Flow fields created by the piston-cylinder apparatus
were measured by DPIV. A meridian symmetry plane of the
axisymmetric flow was illuminated by a pulsed Nd:YAG
laser sheet. Glass spheres �13 micron nominal diameter�
seeded in the flow reflected incident laser light onto a digital
�CCD� camera oriented with its image plane parallel to the
laser sheet. Particle image patterns from adjacent camera
frames were interrogated by the method of Willert and
Gharib16 to determine the corresponding velocity field. Vor-
ticity fields were subsequently computed based on the mea-
sured velocity fields. Velocity and vorticity measurements
possess an uncertainty of 1% and 3%, respectively.

The physical dimensions of the vortex generator �i.e.,
exit diameter De=2.54 cm, exit velocity Ue=5.5 cm s−1�
lead to a nominal flow Reynolds number of approximately
1400. The Reynolds number calculated based on the vortex
ring circulation is slightly larger, approaching 2000. These
parameters as well as dye visualizations of the flow indicate
that the vortex rings generated in these experiments prima-
rily exhibit laminar flow behavior.30 Accordingly, the inter-
polation of the DPIV data in later analyses does not intro-
duce artifacts in the form of spurious flow features. To be
sure, a comparison of measured velocity fields at the original
spatial resolution �0.19	0.19 mm per pixel� and after en-
hancement via interpolation does not reveal any discernible
differences in integrated flow parameters such as the instan-
taneous vortex ring circulation, or the location of critical

30
points in the flow such as stagnation points.
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B. Free-swimming Aurelia aurita jellyfish

Jellyfish are unique among most animals in their heavy
dependence on fluid transport for both locomotion and feed-
ing. During locomotion, the animals use the surrounding am-
bient fluid to create vortex rings—one during the contractile
power stroke and one during the relaxation recovery stroke.14

The momentum imparted to the fluid in these vortices results
in net thrust generation by the animals during locomotion.
Similar vortical flows are also created by the animals to in-
duce transport of prey and nutrients in the surrounding fluid
toward the bell margin, where contact is made with the ten-
tacles and oral appendages. This heavy dependence on fluid
transport for behaviors that are critical to their survival sug-
gests that useful design and optimization principles for effec-
tive transport49,50 may be uncovered by studying the physical
mechanisms whereby fluid transport is accomplished. The
role of vortex ring dynamics is of particular interest in this
regard. Quantitative measurements of the flow created by
these animals enables a determination of whether lobe dy-
namics and vortex ring kinematics observed in previous the-
oretical and numerical models also exist in a naturally occur-
ring biological flow that is much more unsteady.

Juvenile Aurelia aurita medusae �i.e., jellyfish with a
characteristic bell-shaped body� were obtained from the Ca-
brillo Marine Aquarium �San Pedro, CA�. The animals were
transported on the day of quantitative visualization to a 75
gallon water tank at Caltech designed specifically to house
jellyfish for DPIV measurements. A schematic of the facility
is provided in Fig. 5.

A small background current was maintained in the tank
to prohibit the tendency for jellyfish to swim toward walls
and flow conditioners, where they are susceptible to damage.
Seawater of appropriate salinity ��35 per mill�, temperature
��15 °C�, and filtrate size �less than 20 
m� was circulated
by a small magnetic drive pump �Iwaki Co.�. The tempera-
ture was regulated to ±1 °C by an inline electronic chiller
�TWA Enterprises, Inc.�. Organic waste created by the ani-
mals was treated by an inline canister filtration system
�Nu-clear Filters�. The walls of the tank were constructed
from transparent acrylic to facilitate quantitative imaging

FIG. 5. Water tank and imaging apparatus for quantitative studies of jelly-
fish swimming and feeding.
experiments.
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Quantitative imaging was accomplished using DPIV. A
laser sheet illuminated a two-dimensional plane of the flow
inside the pseudokreisel. Incident light reflected by particles
in the flow was captured by a CCD camera oriented so that
its image plane was parallel to the laser sheet. Brine shrimp
�used as feed� dispersed throughout the water tank provided
a modest signal that could, in principle, be analyzed by
DPIV. However, to increase the signal-to-noise ratio, addi-
tional 13 micron diameter �nominally� glass beads were
seeded in the water tank. These particles increased the scat-
tering of incident laser light, resulting in higher-quality im-
ages for interrogation.

Due to the lack of control of jellyfish motion within the
tank, the laser system and camera were mounted on a three-
axis traverse to facilitate movement of the measurement win-
dow, in accordance with the current location of the animal in
the tank. This method increased the efficiency of the data
collection process, since it was not necessary to wait for the
animal to swim through a fixed measurement window. How-
ever, it is important to note that the camera and laser were
kept in a fixed position during the process of image capture,
to ensure that the flow fields were measured with respect to
an inertial frame of reference. Velocity fields were computed
using the same interrogation techniques implemented for the
mechanically generated vortex rings described above.

IV. RESULTS

A. Mechanically generated vortex rings

1. LCS analysis

Figures 6�a� and 6�b� show color contour plots of the
FTLE fields computed from the DPIV data at the arbitrary
time t=3.4 s, with integration times of T=−3.4 s and T
=3.4 s. Time t=0 corresponds to the initialization of vortex
formation, i.e., the beginning of fluid ejection from the cyl-
inder. The vortex is completely formed around t=1 s and
propagates from right to left as time evolves. The FTLE
fields were computed by the software package MANGEN, a
dynamical systems computational toolset created by Francois
Lekien of Princeton University. The algorithm can be sum-
marized as follows:

FIG. 6. �Color online� Contour plots of the FTLE fields computed from DPI
and �b�, respectively. Position coordinates are specified in centimeters.
At each time t, we have the following:
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�1� A grid of particles X�t� is advected by the flow by nu-
merically integrating the velocity field data with a
fourth-order Runge-Kutta-Fehlberg algorithm to give
X�t+T�, which are the values of the flow map at each
point. This numerical integration requires interpolating
the velocity data, for which a third-order interpolator51

was used.
�2� The spatial gradient of the flow map is obtain at each

point in the initial grid by central differencing with
neighboring grid points

�3� The FTLE is computed at each point in the initial grid
by evaluating �1�.

The previous three steps are repeated for a range of times t to
provide a time series of FTLE fields.

A Cartesian grid was used for the FTLE computations
shown in Fig. 6, with uniform spacing of 0.01 cm. The
ridges of high FTLE values in each plot represent LCS. For
Fig. 6�a�, the LCS is an attracting LCS �aLCS� since T�0,
and for Fig. 6�b� the LCS is a repelling LCS �rLCS� since
T�0. The aLCS is analogous to the manifolds shown by the
solid line in Fig. 3 and the rLCS represents the manifolds
shown by the dashed lines in Fig. 3. The looping behavior of
the manifolds shown in Fig. 3 is revealed in the FTLE fields
of Fig. 6 if a longer integration time is chosen, as we will see
�although it is already somewhat noticeable in the plots�.

The time, t=3.4 s, at which we chose to show the FTLE
field is somewhat arbitrary, and the integration length �T �
=3.4 s is also somewhat arbitrary. For example, we could
have chosen to show the FTLE fields at time t=3.4 s using
integration times of T=2 and −2 s. If a smaller integration
time is used, then not as much of the manifold is revealed,
whereas if a longer integration time is used, more of the
manifold is revealed. However supposing that the data be-
gins at t=0, if we chose T�−3.4 s then we are restricted by
the availability of data to show the FTLE field at some time
t� �T�. Because the FTLE is a measure of the linearized
growth rate about a trajectory, as �T� becomes larger, the
resolution of the FTLE computational grid typically must be
increased. The integration length of �T � =3.4 s was chosen
because it is long enough to reveal the boundary of the vor-

time t=3.4 s, with an integration times T=−3.4 s and T=3.4 s in panels �a�
V at
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tex ring, yet short enough to keep the plot �and computation�
from becoming overly complicated.

Superimposed on the FTLE contour plots of Fig. 6 is the
DPIV velocity field data at t=3.4 s. Notice that it is impos-
sible to define a vortex boundary from inspection of the ve-
locity field. If we plot the two LCS given in Fig. 6�a� and
6�b� together, we obtain the plot given in Fig. 7. The LCS, up
to their intersections, provide a well defined vortex boundary,
as suggested by Shariff et al.2,3 and Rom-Kedar et al.10

These LCS can be thought of as material lines,25 such that
transport is locally tangent to these structures. They separate
the circulating fluid that moves downstream with an average
velocity equal to the speed of the vortex from the rest of the
fluid. Because the LCS are time varying, it is the deforma-
tion and interaction of these coherent structures that allows
fluid to be entrained or detrained; cf. Refs. 2, 3, and 11.

If the FTLE field shown in Fig. 6�b� is computed from a
longer integration time T, we can obtain the LCS shown in
Fig. 8, where we have zoomed in to the lower left hand
corner of the vortex ring. The rLCS loops progressively back
and forth. The intersection of this looping with the aLCS
creates lobes. These empirical data are sufficient to validate
previous theoretical and numerical predictions regarding the

FIG. 7. �Color online� Intersection of aLCS �blue curve� and rLCS �red
curve� define the vortex interior. Shown for t=3.4 s.

FIG. 8. �Color online� Looping of the rLCS. Superimposed is a rectangular

parcel of fluid.
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transport of fluid into and out of the interior of the vortex
ring via the evolution of these lobes. The following analysis
accomplishes this.

Suppose we place a rectangular parcel of fluid particles
in the measured flow at time t=3.4 s and locate the parcel as
shown by the dashed rectangle in Fig. 8. The vortex bound-
ary is given by the aLCS �at least up to the intersection point
of the two manifolds in the bottom right hand side of the
plot; cf. Fig. 7�. Thus the parcel of fluid intersects the interior
and exterior of the vortex. Using the Eulerian velocity field
description from DPIV, it would be impossible to determine
specifically which particles are entrained, detrained, or re-
main inside or outside the vortex. However, we can make
such a prediction from the LCS derived from the measured
vortex ring flow. The particles in the rectangular parcel lo-
cated “outside” the rLCS at time t=3.4 s are darkly colored,
and those located inside the rLCS at that instant are lightly
colored. The aforementioned theoretical and numerical re-
sults predict that as time evolves, all the lightly colored
particles—even those outside the vortex ring at this instant—
are entrained into the vortex interior, and all darkly colored
particles—even those inside the vortex ring at this instant—
will be left in the wake.

Figure 9 shows the time evolution of this parcel of fluid
particles �as dictated by integrating the measured velocity
field from DPIV� with the time evolution of the LCS. The
LCS are shown by plotting the FTLE fields as in Fig. 6, but
shading all level sets below some upper threshold white, and
coloring the upper level sets for the forward and backward
time FTLE fields. Figure 9�a� shows the initial location of
the parcel, which is composed of 16110 particles, with 10250
darkly colored and 5860 lightly colored. The parcel initially
becomes stretched into a thin filament as it is advected
around the bottom of the vortex; cf. Fig. 9�b�. As the parcel
propagates up the other side of the vortex �which is itself
moving relative to the laboratory frame�, it forms lobes that
are dictated by the looping of the aLCS. The looping of the
aLCS is not shown in Fig. 9, but one can easily see its effect
from the “spikes” formed by the parcel as it approaches the
rear of the ring. As mentioned previously, the name attracting
LCS implies that a parcel placed about this manifold will
align with the manifold over time and analogously a parcel
placed over the repelling LCS is stretched apart as time
evolves. As the parcel continues to be advected by the flow,
the lightly colored particles are entrained into the vortex
while the darkly colored particles are detrained and left be-
hind the vortex; Figs. 9�c� and 9�d�. A movie of the evolution
shown by the snapshots of Fig. 9 can be found at http://
www.cds.caltech.edu/~marsden/research/demos/.

In Dabiri and Gharib30 a variety of counterflow protocols
were implemented to alter the vortex ring dynamics. These
protocols were comprised of adding a constant counterflow
initiated some time after vortex formation was initialized by
the piston-cylinder apparatus. While these flows were more
unsteady than the one analyzed above, LCS computed from
data of these experiments all revealed lobe dynamics quali-
tatively similar to the no counterflow experiment analyzed

here, thus demonstrating the robustness of these results.
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In the works of Shariff et al.1,2 and Rom-Kedar et al.,11

the heteroclinic tangle geometry was obtained from vortex
ring models and was revealed on Poincaré sections by ex-
ploiting the periodicity of the flow. In the simulations of the
axisymmetric flow studied by Krasny and Nitsche,12 a domi-
nant frequency existed that was used to develop a Poincaré
section, but it was clear that the unstable manifold evolved
according to lower subharmonics, creating a more convo-
luted picture than the entanglement shown in Refs. 1, 2, and
11. However, the heteroclinic geometry for the flow consid-
ered here is based on empirical data and shows the time-
dependent geometry of the entanglement without the need
for Poincaré sections. This capability is important when pe-
riodicity is lacking, such as in the counterflow experiments
discussed previously, or in the case of the swimming jellyfish
studied later. Additionally, it is important to note that in ape-
riodic systems, the “stable and unstable manifolds” �more
properly rLCS and aLCS� need not be infinite in length as in
the periodic cases. Furthermore, it is not clear that lobe dy-
namics need exist in aperiodic flows in general. Along these
lines, Joseph and Legras47 studied the polar vortex using
finite-size Lyapunov exponent fields to reveal LCS that de-
marcate a boundary of the vortex. Although the polar vortex
has a monopole structure rather than the dipole configura-
tions studied here �and other flow structures present� it was
nevertheless shown that lobe dynamics were present, albeit
much more faintly than for the flows considered here.

Although the mechanically generated rings are approxi-
mately axisymmetric, nonidealities in the experimental

setup, such as reactive forces generated during the experi-
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ment or nonquiescent ambient fluid, lead to slight asymme-
tries in the azimuthal direction. These asymmetries manifest
in the slight ordinate asymmetry of the FTLE fields; cf. Fig.
6. However, it is expected that swirl is negligible for the flow
of the mechanically generated vortex rings, because swirl
would only become noticeable farther downstream from the
evolution studied here.52 Therefore, it is justifiable to study
the evolution of the LCS on two-dimensional sections, how-
ever, it is most desirable to understand the three-dimensional
geometry of these structures. Such a three-dimensional ge-
ometry is intuitively some slightly deformed surface of revo-
lution of the two-dimensional sections shown here, but
knowing, for example, how lobe volume varies azimuthally,
or how the intersections of the LCS vary azimuthally is im-
portant for understanding transport rates. The need for such a
three-dimensional view becomes more compelling when the
flow becomes more azimuthally asymmetric, such as in the
case of the jellyfish; cf. Sec. IV B.

2. Comparison with Eulerian analysis

The use of instantaneous streamlines as an accurate rep-
resentation of flow kinematics is valid strictly for steady
flows. However, previous measurements of isolated vortex
ring propagation30 suggest the possibility of applying such
methods to approximately describe quasisteady flow. In that
case, the vortex boundary was determined by plotting
streamlines of the measured flow in a reference frame propa-
gating with the vortex ring. The cross-sectional area of the

FIG. 9. �Color online� Evolution of
lobes in empirical vortex rings.
vortex ring was determined from an elliptical curve fit to the
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�instantaneous� front and rear stagnation points of the vortex
ring, as well as its radial extent. It is useful to compare the
fidelity of the present LCS methods with quasisteady flow
kinematics determined from such an Eulerian analysis.

Figure 10 plots the temporal trend in vortex ring cross-
sectional area measured from the previous Eulerian
analysis30 along with data measured from the LCS method
described above. The two trends are in close agreement, in-
dicating the expected result that the Eulerian and Lagrangian
analyses converge in the limit of steady flow. However, mea-
surements from the LCS method tend to be less noisy. More
importantly, the LCS method provides much more specific
information regarding the transport of fluid �e.g., the results
of the previous section, Sec. IV A 1� and it is not limited by
flow unsteadiness as with the Eulerian perspective.

FIG. 10. Cross-sectional area of the vortex interior as a function of time as
measured from the streamline method �Ref. 30� and the LCS method de-
scribed in Sec. IV.

FIG. 12. �Color online� Panel �a� shows the FTLE field �T=13.3 s, grid spa
field reveals an LCS, that is superimposed over the jellyfish at a slightly late

entrained and shows a recirculation zone behind the jellyfish.
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B. Free-swimming Aurelia aurita jellyfish

Figure 11 plots measurements of the velocity field and
instantaneous streamlines generated by a free-swimming Au-
relia jellyfish observed from the methods described in Sec.
III B. The vortical wake behind the animal is visible and
exhibits a flow geometry consistent with previous dye
visualizations.14 However, this Eulerian perspective provides
no quantitative indication of the geometry of fluid transport,
e.g., the magnitude or distribution of fluid transport between
the animal and its surrounding, or the presence of lobe
dynamics.

FTLE fields were computed from the DPIV data in a
manner similar to what was described in Sec. IV A 1 for the
mechanically generated rings. Figure 12�a� shows the FTLE
field at a given instance in the neighborhood of the jellyfish.

FIG. 11. Panel �a� shows DPIV measurements of the velocity field surround-
ing a free-swimming Aurelia jellyfish at an arbitrary time in its swimming
motion. Panel �b� shows the instantaneous streamlines of the flow in the
wake of a jellyfish similar to the one in panel �a�.

of 0.04 cm� at the same time as the measurement in Fig. 11�a�. The FTLE
in panel �b�. The evolution of the LCS indicates which regions of fluid are
cing
r time
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A very noticeable LCS exists in the FTLE field. Figure 12�b�
plots the LCS �at a slightly later time� over the location of
the jellyfish. In addition to discovering the existence of a
closed region of the flow in contact with the sensory appa-
ratus of the animal �in the subumbrellar region�, the LCS
also reveals the presence of lobe dynamics. An analysis simi-
lar to that in Fig. 9 demonstrates that the lobes formed at the
upstream end of the animal dictate which portions of the
ambient fluid are sampled by the animal �via passive filter
feeding and prey capture� and which portions pass by the
animal without interacting, as shown in Fig. 13. A movie of
the evolution shown by the snapshots of Fig. 13 can be found
at http://www.cds.caltech.edu/~marsden/research/demos/.
The computations presented here were repeated on a second
set of data collected from a similar jellyfish experiment, re-
sulting in similar lobe dynamics. It is important to keep in
mind that the LCS shown here are cross sections of two-
dimensional surfaces that exist for the fully three-
dimensional flow. Progress is currently being made on ob-
taining the full three-dimensional lobe dynamic geometry.

V. CONCLUSIONS

In this paper we have shown, using DPIV data for the
velocity fields of both mechanically generated vortices and
the flow around a free-swimming Aurelia aurita jellyfish,
that heteroclinic and lobe-like structures are present for fully
unsteady flows. For the mechanically generated vortex rings,
a computational study using Lagrangian coherent structures

FIG. 13. �Color online� Evolution of lobes about jellyfish. The lobes distin-
guish which fluid is entrained into the subumbrellar region.
�LCS� revealed lobe dynamics that were consistent with pre-
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vious analytic and numeric studies, but were able to do so
without the need for a perturbative assumption or periodicity
or the use of Poincaré sections. Remarkably, a similar analy-
sis applied to the measured flow about the jellyfish demon-
strated qualitatively similar lobe dynamics. The lobes reveal
the mechanism for entrainment in the jellyfish flow, which is
critical to its feeding.

The results presented in this paper are noteworthy, not
only for their important biological implications �which are
beyond the scope of the present paper�, but more immedi-
ately for their ability to reveal governing fluid transport
mechanisms in empirical, unsteady flows. It is reasonable to
suggest that other complex flows of interest in nature and
technology should be examined within the framework de-
scribed here to uncover key fluid transport concepts such as
lobe dynamics. In particular, flows in the cardiovascular sys-
tem and microfluidics represent significant opportunities for
such an analysis.

The results of the present paper demonstrate that, in
comparison with a Lagrangian analysis, much of these fluid
dynamical features are missed in a traditional Eulerian analy-
ses based on velocity field snapshots or on instantaneous
streamlines. Other Lagrangian studies have primarily fo-
cused on periodic or nearly periodic model flows for both
theoretical and numerical investigations. Advantages of the
LCS methods used in this paper are their applicability to
fully unsteady flows, and the relative ease of implementa-
tion. In addition, the extensions of the experimental methods
to obtain velocity data, the LCS theory, and the MANGEN
software to handle fully three-dimensional flows is currently
underway �see also Ref. 53�, which will make the analyses
even more interesting.

Although lobe dynamics are ubiquitous for periodically
perturbed two-dimensional incompressible fluid flows
�which are Hamiltonian systems� and for certain 3D flows as
well, it is not obvious that similar geometries should occur in
naturally occurring aperiodic flows. There has been a need to
better understand both the conditions under which such
structures arise in vortex flows of practical importance to
engineering and biology, and which theoretical and compu-
tational tools can be applied or extended to study fluid trans-
port as well as other relevant topics, such as multiobjective
optimization, in such systems. In this paper we have pro-
vided some important steps toward such interesting goals.
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