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Effect of time-dependent piston velocity program on vortex ring formation
in a piston/cylinder arrangement
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An analytical model describing laminar vortex ring formation in a nozzle flow generator �piston/
cylinder arrangement� proposed previously by the authors is extended to time-dependent velocity
programs. The predictions of the model are in good agreement with the available numerical data for
impulsive, linear, and trapezoidal velocity programs. We also show that properly scaled vortex
circulation is another universal quantity, in addition to the dimensionless energy, related to vortex
rings and verify this by comparing with available numerical simulations and experimental results.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2188918�
I. INTRODUCTION

Vortex rings are usually generated in the laboratory by
the motion of a piston pushing a column of fluid of length L
through an orifice or nozzle of diameter D. This results in a
separation of the boundary layer at the edge of the orifice or
nozzle and its subsequent spiral roll-up.

The piston/cylinder arrangement has been extensively
used to address the problem of vortex ring formation.1,2

Gharib et al.,3 in their experimental study of vortex ring
formation, addressed the question of the largest circulation
that a vortex ring can attain by increasing L /D while keeping
the average piston velocity fixed.

It turned out that the pinch-off was always observed to
occur at a stroke ratio �L /D� of approximately 4. This uni-
versal time scale was called the “formation number.” The
existence of this limiting time scale for the pinch-off process
�formation number� was tested by generating vortex rings
with different jet exit diameters, Reynolds numbers, and exit
boundary conditions, as well as with various nonimpulsive
piston velocity programs.

Krueger and Gharib4 measured the dynamic effect of the
vortex ring pinch-off process and discovered that the time-
averaged force generated by a starting flow becomes maxi-
mal at the onset of vortex ring pinch-off. Krueger et al.5 and
Dabiri and Gharib6 studied the influence of background flow
on the vortex ring formation.

Rosenfeld et al.,7 Zhao et al.,8 and Mohseni et al.9 stud-
ied the vortex ring formation numerically. Rosenfeld et al.7

showed that the formation number is strongly dependent on
the velocity profile and also to a lesser extent depends on the
velocity program �the piston velocity as a function of time�.
The latter fact was also observed by Gharib et al.3 In their
experiments the formation number ranged from 3.8–4.2 for

an impulsive velocity program �constant piston velocity� but
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could be as large as 4.5 for time-dependent velocity pro-
grams.

Mohseni et al.9 suggested that the vortex ring pinch-off
can be delayed by changing the nozzle diameter during the
production of the ring. It was demonstrated experimentally
by Dabiri and Gharib10 and Allen and Naitoh11 that very
thick vortex rings can be obtained by temporally decreasing
the nozzle exit diameter during fluid ejection.

Theoretical models of vortex ring formation were pro-
posed by Mohseni and Gharib,12 Shusser and Gharib,13

Linden and Turner,14 Mohseni,15 and Kaplanski and Rudi.16

Shusser and Gharib13 proposed a way of modeling vortex
ring formation based on the hypothesis that the pinch-off
occurs when the translational velocity of the ring equals the
jet flow velocity near the vortex ring. The predictions of the
model were in good agreement with available experimental
and numerical data for the basic case of constant piston ve-
locity.

Studying vortex ring formation and pinch-off can clarify
its importance to propulsion and locomotion in biological
systems.4,10 Since one often encounters temporal variation of
nozzle exit diameter or of starting jet velocity in these
systems,4,10 it is desirable to develop a model of vortex ring
formation that is applicable in more general physical situa-
tions than the basic case considered previously.

To achieve this goal, such a model must consider a real-
istic velocity profile and account for the Reynolds number
dependence of the formation number. As a first step in this
program, we consider the time-dependent piston velocity.

In the present work, we study the vortex ring formation
for linear and trapezoidal velocity programs that were inves-
tigated in the numerical simulations of Rosenfeld et al.7 We
will also consider vortex ring circulation for general time-
dependent velocity programs and show that when properly

scaled it is another universal quantity related to vortex rings.
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The last result is compatible with Mohseni and Gharib12 and
Mohseni et al.,9 who demonstrated that the scaling should be
with respect to invariants of motion.

The plan of the paper is therefore as follows. In Sec. II
we briefly review several vortex ring formation models.
Shusser and Gharib’s model13 is extended to time-dependent
velocity programs in Sec. III. Finally, universality of the vor-
tex ring circulation is discussed in Sec. IV.

II. VORTEX RING FORMATION MODELS

Gharib et al.3 defined a nondimensional energy of a vor-
tex ring,

� =
E

��I�3
. �1�

Here, E is the vortex ring energy, I is the vortex ring impulse,
� is the vortex ring circulation, and � is the density of the
fluid.

Using the slug-flow approximation1,2 for the basic case
of a constant piston velocity UP �the impulse velocity pro-
gram� and a uniform exit velocity profile

� =
1

2
LUP, �2�

I =
1

4
�D2�LUP, �3�

E =
1

8
�D2�LUP

2 , �4�

Gharib et al.3 were able to calculate � as a function of the
piston stroke L. The authors demonstrated that the pinch-off
occurs when dimensionless energy provided by the piston
decreases beyond a certain limited value �lim�0.33. This
value of �lim corresponded to the formation number L /D
�4. For higher values of L /D, the energy provided by the
piston was less than the vortex ring energy. Gharib et al.3

concluded that the pinch-off occurs when the apparatus is no
longer able to deliver the energy required for steady vortex
ring existence.

Aiming to predict the formation number analytically,
Mohseni and Gharib12 proposed to approximate the ring as a
member of Norbury’s family of vortex rings.17 This family
has one parameter—the dimensionless thickness of the ring
�. Each value of � between zero and �2 corresponds to one
particular member of Norbury’s family.

Mohseni and Gharib12 used Roberts’s formula18 to cal-
culate the translational velocity of the ring, which was found
to be UP /2 in the slug-flow approximation. Using Norbury’s
family of vortices17 and the slug-flow model, they predicted
�lim.

Shusser and Gharib,13 trying to clarify the dynamics of
the pinch-off, assumed that the pinch-off occurs when the
translational velocity of the ring equals the jet flow velocity
near the ring. This hypothesis resulted in the following cri-

terion for the pinch-off:
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W =
D2

4R2UP, �5�

where W is the translational velocity of the ring, R is the ring
radius, and D is the diameter of the cylinder.

Adopting the approach of Mohseni and Gharib,12 Shus-
ser and Gharib13 approximated the ring as a member of Nor-
bury’s family of vortex rings17 and utilized Fraenkel’s
second-order formulas19 for these vortices:

W = B������3

�I
, �6�

R = b���� 2I

���
, �7�

where

B��� =
1

4
�1 +

3

4
�2�ln

8

�
−

1

4
+

3�2

8
�5

4
− ln

8

�
	
 , �8�

b��� =
1

�2�1 +
3

4
�2	 . �9�

Shusser and Gharib13 obtained a nonlinear equation for
the dimensionless energy of the ring at pinch-off as

� =
2BR2

D2��
. �10�

They showed that the experimental value of �lim obtained by
Gharib et al.3 satisfies �10� with the reasonable accuracy of
about 6%. The authors concluded that both their approach
and that of Gharib et al.3 and Mohseni and Gharib12 are
equivalent.

Shusser et al.20 �see also Dabiri and Gharib21� investi-
gated the influence of a boundary layer on the cylinder wall
on vortex ring formation. They solved Eq. �10� using nu-
merical values for properties of Norbury’s vortices given in
Ref. 17. Though this solution could not be calculated with a
high accuracy due to Norbury’s data only being available for
discrete values of �, its approximate value was found to be
about 0.4. The authors also verified the accuracy of Fraen-
kel’s approximation19 for Norbury’s vortices by calculating
the formation number for the basic case of the uniform ve-
locity profile and constant piston velocity using both
Norbury’s data17 and Fraenkel’s second-order formulas.19

The accuracy of Fraenkel’s approximation turned out to be
very good, the error being less than 2%.

We now proceed to extend the model proposed by
Shusser and Gharib13 to time-dependent velocity programs.
Since the model is based on the slug-flow approximation, the
predictions of the model will be compared with numerical
results of Rosenfeld et al.7 obtained for the uniform velocity

profile.
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III. TIME-DEPENDENT PISTON VELOCITY

Consider formation of a laminar vortex ring in a piston/
cylinder arrangement. Following Shusser and Gharib,13 we
aim to estimate the dimensionless pinch-off time by calculat-
ing the translational velocity of the ring. We adopt the slug-
flow approximation and assume a uniform exit velocity pro-
file. We also approximate the ring as a member of Norbury’s
family of vortex rings17 and utilize Fraenkel’s second-order
formulas19 for these vortices �6�–�9�.

Following Shusser et al.,20 we shall assume for the di-
mensionless thickness of the ring �=0.4. This choice of �
corresponds to B=0.6987 and b=0.6682. Comparing these
values with Norbury’s numerical solution, one can see that
the accuracy of Fraenkel’s approximation is within 1.4% in
this case.

A. Linear velocity program

Consider a linear program for the piston velocity �see
Fig. 1�a��,

UP = U0
t

T
. �11�

The slug-flow approximation for this case is as follows:

� =
1

3
LU0, �12�

I =
1

6
�D2�LU0. �13�

Calculating the properties of the ring from �6�–�9�, one
obtains for the radius R and the velocity W

FIG. 1. Nonimpulse velocity programs: �a� linear; �b� trapezoidal.
R = bD , �14�
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W =
B�2

3�

UPL

D
. �15�

Applying the criterion �5�, we obtain that the formation
number is

L

D
=

3��2

8b2B
� 5.34. �16�

The value of the formation number obtained numerically
by Rosenfeld et al.7 is 5.22. Therefore, the model provides a
good accuracy of 2.3% for the linear velocity program.

B. Trapezoidal velocity program

Following Rosenfeld et al.,7 a symmetric trapezoidal ve-
locity program as shown in Fig. 1�b� was also considered. As
in their paper, the final piston stroke ratio was selected to be

�
0

T

UP�t�dt = 6D . �17�

Then, the velocity program is defined by a single parameter

n =
�T

T
. �18�

The case n=0 corresponds to the impulse program. Ob-
viously, it must be n�0.5. The condition �17� can be written
as

U0T

D
=

6

1 − n
. �19�

Repeating the calculation of Sec. III A, one can see that
�19� ensures that the first part of the velocity program
�0� t��T� is not long enough for the pinch-off to happen
during this time. For the middle part ��T� t�T−�T�

UP = U0, �20�

L = U0�t −
�T

2
	 , �21�

� =
1

2
U0

2�t −
2�T

3
	 , �22�

I =
�D2

4
�U0

2�t −
2�T

3
	 . �23�

Using �5�–�9�, we obtain that the dimensional time of the
pinch-off t* is

t* =
2�T

3
+

��2T�1 − n�
24b2B

. �24�

This value of time lies within the range �T� t*�T−�T if
n�n0, where

n0 =
24b2B − ��2

40b2B − ��2
� 0.38. �25�

Substituting �24� into �21�, we obtain that for n�n0 the for-

mation number is
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L

D
=

n

1 − n
+

��2

4b2B
. �26�

The case n=0 corresponds to the impulse velocity pro-
gram. Then,

L

D
=

��2

4b2B
� 3.56. �27�

For the uniform velocity profile and the impulse velocity
program Rosenfeld et al.7 obtained the formation number
L /D=3.60. One sees that our prediction is very close to their
numerical results.

If n�n0 then the last part of the velocity program
T−�T� t�T must be analyzed. Then,

UP =
U0�T − t�

�T
, �28�

L = U0�T − �T −
�T − t�2

2�T

 , �29�

� =
1

2
U0

2�T −
4�T

3
−

�T − t�3

3�T2 
 , �30�

I =
�D2

4
�U0

2�T −
4�T

3
−

�T − t�3

3�T2 
 . �31�

Defining

x =
T − t

�T
, �32�

one finds, after some manipulation, that the pinch-off time
corresponds to the root of the cubic equation

x3 +
��2�1 − n�

8b2Bn
x + 4 −

3

n
= 0. �33�

Considering the derivative of the left-hand side of �33�, one
can show that for n0�n�0.5 Eq. �33� has only one real root
x* and that this root satisfies 0	x*�1. Then, using �29� and
�32�, we find the formation number

L

D
= 6 −

3x*
2n

1 − n
. �34�

The relationships �26� and �34� as well as the numerical
results of Rosenfeld et al.7 are plotted in Fig. 2. For conve-
nience, the linear program case, which can be considered as
n=1, was also added to this figure though the range 0.5
	n	1 does not correspond to any physical situation. We
see that the agreement between the theoretical and the nu-
merical results is good �the discrepancy does not exceed
3.8%� and one can conclude that despite its simplicity the
model gives good predictions for a broad range of different

velocity programs.
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IV. VORTEX RING CIRCULATION

Rosenfeld et al. �Ref. 7, p. 313�, analyzing their numeri-
cal simulations for various time-dependent velocity pro-
grams, observed that the vortex ring circulation is relatively
insensitive to the formation conditions, once its asymptotic
state has been reached. The authors conjectured that properly
scaled vortex circulation is yet another universal quantity
related to vortex rings. We now show that this conjecture is
indeed right �see also Mohseni and Gharib12�.

Consider a general time-dependent velocity program,

UP = U0f�t� . �35�

Using the slug-flow approximation, one obtains for the vor-
tex circulation � and its impulse I

� =
1

2
U0

2F�t� , �36�

I

�
=

�D2

4
U0

2F�t� , �37�

where f�t� and F�t� are related by

F�t� = �
0

t

f2�
�d
 . �38�

Using �6� and �7�, one can write the pinch-off criterion
�5� as

��I

�
=

���

8b2B
D2UP. �39�

Substituting �36� and �37� in �39� yields

F�t�
f�t�

=
�

2�2b2B

D

U0
. �40�

Following Mohseni and Gharib,12 we define a dimen-
sionless vortex ring circulation �nd, where “nd” stands for

FIG. 2. Formation number for impulse, linear, and trapezoidal velocity
programs.
nondimensional, as follows:
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�nd = ��3 �

IUP
2 . �41�

Substituting �36� and �37� and using �40�, one obtains

�nd =�3 �

16b4B2 � 1.26. �42�

Thus, the dimensionless vortex ring circulation defined
by �41� is indeed a universal constant for all time-dependent
velocity programs. On the other hand, its value will be dif-
ferent for nonuniform exit velocity profiles.

Before comparing the theoretical result �42� with nu-
merical computations, we would like to note that Mohseni
and Gharib12 also suggested a definition of the dimensionless
vortex ring circulation based on the translational velocity of
the ring,

�nd� = ��3 �

IW2 . �43�

Consequently, they showed that only two nondimensional
parameters, namely End and �nd �or �nd� �, govern the pinch-
off process. Mohseni et al.9 verified this numerically.

Using �6�, �36�, and �37�, we obtain that

�nd� =�3 �

B2 � 1.86. �44�

Mohseni and Gharib �Ref. 12, p. 2438� report that the
experimental value of �nd� , which they calculated from the set
of experiments of Gharib et al.,3 is 1.75. On the other hand,
Allen and Naitoh11 obtained in their experiments values of
�nd� between 1.7 and 2.5 but with a relatively large experi-
mental error of ±0.25. One can conclude that the model pre-
dictions are in agreement with experimental results and use
numerical calculations for further verification.

To verify the universality of the dimensionless circula-
tion �41�, we have compared our results with the data from
numerical simulations of Rosenfeld et al.7 for the uniform
exit velocity profile and impulse, linear, and trapezoidal ve-
locity programs, as given in their Table 1. Though the au-
thors did not report the value of vortex ring impulse, its
value can be estimated if one assumes that the ring impulse
is equal to the total momentum flux from the exit of the
cylinder �Ref. 3, p. 135�. Then, the impulse of the ring can be
calculated from the total circulation produced by the piston
�T �which is included in Table 1 of Rosenfeld et al.7� by
using the slug-flow approximation,

I

�
=

�D2

2
�T. �45�

Normalizing the ring and the total circulations as in
Rosenfeld et al.7 and using �45�, one obtains

�nd =�3 2

�

�

U0D

1

�3 �T

U0D

�UP

U0
	−2/3

. �46�

The ratio of piston to maximum velocity UP /U0 in �46�

should be calculated at the pinch-off time using the values of
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the formation number given in Table 1 of Rosenfeld et al.7

The result is as follows: for the impulse and trapezoidal ve-
locity programs

UP

U0
= 1, �47a�

for the linear program

UP

U0
=�L/D

6
. �47b�

In �47b�, L /D denotes the formation number.
For trapezoidal programs, �47a� means that the pinch-off

occurs in the middle part of the program. It should be noted
that our theory predicts this for n�0.38 �see �25��. That
means that for n=0.4 the pinch-off must take place very
close to the end of the middle part. This is indeed the case, as
can be seen from the values of the formation number re-
ported by Rosenfeld et al.7 For n=0.4, the end of the middle
part of the velocity program corresponds to L /D=4, while
Rosenfeld et al.7 obtained in their calculations L /D=3.97.

Having computed the value of �nd from Rosenfeld
et al.’s data,7 we plot it in Fig. 3 together with the theoretical
value of �nd �42�. One sees that, despite some variation in
�nd, its value always remains close to the theoretical predic-
tion. The error in the model does not exceed 6.3% and re-
mains within 4% for most of the cases. One can conclude
that dimensionless circulation of the ring �41� is indeed a
universal quantity.

V. CONCLUSIONS

We have shown that Shusser and Gharib’s model13 of
vortex ring formation in a piston/cylinder arrangement can
be extended to time-dependent velocity programs. It gives
good predictions for both linear and trapezoidal velocity pro-

FIG. 3. Comparison of theoretical and numerical results for vortex ring
circulation.
grams.
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It follows from the theory that properly scaled vortex
ring circulation is yet another universal quantity related to
vortex rings. This result is confirmed by available numerical
simulations of Rosenfeld et al.7

It is interesting to compare the predictions of the theory
with the experiments on vortex ring formation with temporal
variation of the nozzle exit diameter.10,11 According to the
theory, increasing the piston velocity increases the formation
number and vice versa. Therefore, one would expect higher
values of the formation number for the decreasing nozzle
exit diameter and lower values of the formation number for
the increasing nozzle exit diameter, the static case being
somewhere in the middle. Considering, for example, the ex-
periments of Dabiri and Gharib,10 we see that this prediction
is mostly but not completely confirmed. Dabiri and Gharib10

�see their Fig. 11� obtained the highest value of the formation
number for their “faster-closing” case, and the values of the
formation number for the closing nozzle were considerably
higher than those for the opening nozzle. On the other hand,
increasing the nozzle exit diameter somewhat increased the
formation number with respect to the static case. The reason
for this discrepancy is the strong dependence of the forma-
tion number on the exit velocity profile.7 Temporal variation
of nozzle exit diameter changes the exit velocity profile
which has an additional effect on the formation number, be-
sides the one caused by acceleration or deceleration of the
flow.

1K. Shariff and A. Leonard, “Vortex rings,” Annu. Rev. Fluid Mech. 24,
235 �1992�.

2T. T. Lim and T. B. Nickels, “Vortex rings.” in Fluid Vortices, edited by S.
I. Green �Kluwer, Dordrecht, The Netherlands, 1995�.

3M. Gharib, E. Rambod, and K. Shariff, “A universal time scale for vortex
ring formation,” J. Fluid Mech. 360, 121 �1998�.

4P. S. Krueger and M. Gharib, “The significance of vortex ring formation to
Downloaded 31 Mar 2006 to 131.215.30.195. Redistribution subject to
the impulse and thrust of a starting jet,” Phys. Fluids 15, 1271 �2003�.
5P. S. Krueger, J. O. Dabiri, and M. Gharib, “Vortex ring pinchoff in the
presence of simultaneously initiated uniform background co-flow,” Phys.
Fluids 15, L49 �2003�.

6J. O. Dabiri and M. Gharib, “Delay of vortex ring pinchoff by an imposed
bulk counterflow,” Phys. Fluids 16, L28 �2004�.

7M. Rosenfeld, E. Rambod, and M. Gharib, “Circulation and formation
number of laminar vortex rings,” J. Fluid Mech. 376, 297 �1998�.

8W. Zhao, S. H. Frankel, and L. G. Mongeau, “Effects of trailing jet insta-
bility on vortex ring formation,” Phys. Fluids 12, 589 �2000�.

9K. Mohseni, H. Ran, and T. Colonius, “Numerical experiments on vortex
ring formation,” J. Fluid Mech. 430, 267 �2001�.

10J. O. Dabiri and M. Gharib, “Starting flow through nozzles with tempo-
rally variable exit diameter,” J. Fluid Mech. 538, 111 �2005�.

11J. J. Allen and T. Naitoh, “Experimental study of the production of vortex
rings using a variable diameter orifice,” Phys. Fluids 17, 061701 �2005�.

12K. Mohseni and M. Gharib, “A model for universal time scale of vortex
ring formation,” Phys. Fluids 10, 2436 �1998�.

13M. Shusser and M. Gharib, “Energy and velocity of a forming vortex
ring,” Phys. Fluids 12, 618 �2000�.

14P. F. Linden and J. S. Turner, “The formation of ‘optimal’ vortex rings, and
the efficiency of propulsion devices,” J. Fluid Mech. 427, 61 �2001�.

15K. Mohseni, “Statistical equilibrium theory for axisymmetric flows:
Kelvin’s variational principle and an explanation for the vortex ring pinch-
off process,” Phys. Fluids 13, 1924 �2001�.

16F. B. Kaplanski and Y. A. Rudi, “A model for the formation of �optimal’
vortex rings taking into account viscosity,” Phys. Fluids 17, 087101
�2005�.

17J. Norbury, “A family of steady vortex rings,” J. Fluid Mech. 57, 417
�1973�.

18P. H. Roberts, “A Hamiltonian theory for weakly interacting vortices,”
Mathematika 19, 169 �1972�.

19L. E. Fraenkel, “Examples of steady vortex rings of small cross section in
an ideal fluid,” J. Fluid Mech. 51, 119 �1972�.

20M. Shusser, M. Rosenfeld, K. Mohseni, and M. Gharib, “On the effect of
pipe boundary layer growth on the formation of a laminar vortex ring
generated by a piston/cylinder arrangement,” Theor. Comput. Fluid Dyn.
15, 303 �2001�.

21J. O. Dabiri and M. Gharib, “A revised slug model boundary layer correc-
tion for starting jet vorticity flux,” Theor. Comput. Fluid Dyn. 17, 293
�2004�.
 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


