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1.  Introduction

Laboratory studies of aquatic organisms are inherently 
limited in their inability to accurately recreate the natural 
marine environment. For example, the presence of walls, 
artificial lighting, and a quiescent or steady background 
flow can each impact natural behaviors of organisms such as 
feeding [1, 2]. Furthermore, many organisms are not viable 
in a laboratory setting due to their fragility [3]. To address 
these limitations in fluid mechanics measurements of aquatic 
organisms, a self-contained underwater velocimetry appa-
ratus (SCUVA) system was developed, enabling a SCUBA 
diver to collect in situ two-dimensional (2D) particle image 
velocimetry (PIV) or particle tracking velocimetry (PTV) 
measurements of animal-fluid interactions using the natural 
particulate in the water column [4]. The SCUVA system has 
been used in a variety of field applications spanning many dis-
ciplines including biology, oceanography, and environmental 

engineering. These applications include studies of feeding, 
swimming and environmental impacts of various jellyfish, 
ctenophore and ostracod species [2, 4–8]. A major limitation 
of the 2D SCUVA technique is that great care must be taken to 
minimize out-of-plane motions of the camera or the flow with 
respect to the laser sheet. Out-of-plane flow, whether naturally 
occurring or induced by diver motion, introduces uncertainty 
into the flow velocity measurement and significantly restricts 
the range of systems that can be studied by 2D techniques 
[4]. A three-dimensional underwater velocimetry apparatus is 
needed to study a larger range of motions and behaviors of 
aquatic animals.

1.1.  Single-camera 3D techniques

A single-camera system is essential for simplified diver oper-
ation and to minimize the imaging system interference with 
organisms and the surrounding flow. Single-camera imaging 
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techniques with the capability of measuring three-dimen-
sional flow fields include laser-sheet scanning PIV (Brücker 
[9]), depth color-coded illumination (McGregor et  al [10], 
Watamura et al [11]), digital in-line holography (Hinsch [12]), 
wavefront sensing (Towers et  al [13]), light field imaging 
(Fahringer et al [14]), and defocusing digital particle image 
velocimetry (DDPIV) (Willert and Gharib [15]). A common 
challenge for each of these single-camera 3D imaging sys-
tems is reduced accuracy of the depth coordinate relative to 
the other coordinate directions. The depth-resolution of laser-
scanning systems is limited by the number of 2D planes that 
are collected per volume [9]. This scanning needs to occur 
over a timescale that is faster than that of the fluid motion, 
typically requiring kHz frame acquisition and laser systems, 
which are currently infeasible for diver operation.

The depth position of a particle can also be measured 
by hue when the volume is illuminated by a range of wave-
lengths. Illumination methods include using a laser [10], LCD 
projector [11] or continuously linearly varying bandpass filter 
[16]. This technique is dependent on wavelength-precise illu-
mination that is not feasible for daytime underwater measure-
ments due to sunlight interference.

Digital in-line holography relies on precise optical align-
ment and a coherent light source to generate and record inter-
ference patterns from the volume of interest [12]. To improve 
the depth-resolution of digital in-line holography, Malkiel 
et al used two inclined mirrors to image perpendicular holo-
grams onto the same camera frame, subsequently matching 
the two sets of collected trajectories together to obtain higher 
accuracy 3D velocities [17]. While successful in application 
to flow in a container, the alignment requirements needed to 
access the flow from multiple sides is prohibitive for diver 
operation.

Wavefront sensing uses the optical distortions from a cylin-
drical lens placed directly in front of the CCD to measure the 
3D position of particles [13, 18, 19]. The difference [18] or 
the ratio [19] of the width and height of a particle’s projected 
image can be used to determine the depth-position. This 
imaging technique depends on accurate vertical and horizontal 

diameter calculations of the particle images, limiting previous 
work to spherical tracer particles that are artificially intro-
duced into laboratory flows.

Light field imaging using a plenoptic camera is a relatively 
recent development for 3D imaging [14]. An array of micro-
lenses is used to encode two spatial components of the light 
field, while the pixels under each microlens are used to encode 
two angular components of the light field. With this type of 
light field measurement, frames with different focal depth 
locations can be computationally generated. The main chal-
lenge with the plenoptic camera is the trade-off between spa-
tial resolution and angular resolution; the size of the microlens 
array determines the spatial resolution, and the number of 
pixels behind each microlens determines the angular resolu-
tion (e.g. a 1000  ×  1000 pixel sensor and 100  ×  100 micro-
lens array results in a planar spatial resolution of 100  ×  100 
pixels and an angular resolution of 10  ×  10).

The relative simplicity of the hardware required to imple-
ment DDPIV, as described in greater detail in the following 
section, lends many advantages for a self-contained diver-
operated imaging system [15]. Its own limitations, including 
depth-sensitivity, performance with increasing particle densi-
ties, and spherical particle assumptions, are addressed in this 
work through development of new image processing algo-
rithms and by utilizing larger camera sensors with smaller 
pixels.

1.2.  Defocusing digital particle image velocimetry (DDPIV)

Single-camera DDPIV utilizes a physical mask with two or 
more apertures located off of the optical axis of the camera. 
This results in the projection of multiple shifted images of the 
same object onto the camera sensor (figure 1). The distance 
between the projected images is a function of the perpend
icular distance of the object from the focal plane. For clarity, 
we denote the objects in physical 3D space (X, Y , Z) as par-
ticles (e.g. A in figure 1), and the corresponding projections 
onto the camera frame (x1, y1, x2, y2) as images (e.g. a1 and 
a2 in figure 1). The magnitude of the distance (b) between the 

Figure 1.  A simplified schematic of a two-aperture DDPIV imaging system and the resulting camera frame, with the nomenclature used 
in this paper indicated. Particle A in physical space (XA, YA, ZA) is projected as two images (a1, a2) separated by a distance (ba) onto the 
camera frame. The distance between the two images (ba), which is a function of the perpendicular distance from the focal plane, and the 
image positions (xa1 , ya1 , xa2 , ya2) are used to compute the 3D pixel coordinates (xa, ya, ba). Particle C, which is closer to the focal plane, is 
projected as two images that are closer together (bc) and also smaller in size, due to decreased blurring. Particle D, positioned on the focal 
plane, is focused as a single image onto the camera frame. For additional details, please reference Willert and Gharib [15].
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two projected images is a function of the out-of-plane position 
of the particle (Z), relative to the focal plane. Specifically, as 
a particle moves farther away from the focal plane, the pro-
jected images shift farther apart and become more blurred. For 
a two-aperture system with apertures equi-distant from the 
center, the center of the two projected images and the distance 
between the two images can be used to compute the 3D pixel 
coordinates of the particle A (xa, ya, ba) (equations (1a)–(1c)). 
The angle (θ) between the two projected images is a function 
of the orientation of the mask (equation (1d)).

x =
(x1 + x2)

2
� (1a)

y =
(y1 + y2)

2
� (1b)

b =

√
(y2 − y1)

2
+ (x2 − x1)

2� (1c)

θ = tan−1
(

y2 − y1

x2 − x1

)
.� (1d)

An important performance metric for a given DDPIV 
system is the sensitivity of the distance between image pairs 

to motion perpendicular to the focal plane 
(
∂b
∂Z

)
. This sensi-

tivity depends in part on the discrete sampling of the light field 
by the finite pixels of the camera sensor. Willert and Gharib 
[15] performed a simplified geometric analysis of the DDPIV 
system, and reported that this sensitivity is also proportional 
to d, the distance between the centers of the apertures:

∂b
∂Z

∝ d
Z2 .� (2)

Further three-dimensional characterization and analysis of 
DDPIV systems has been performed [20–23].

To measure volumes with a total depth of O(10 cm) 
without sacrificing depth resolution using the DDPIV tech-
nique, multiple cameras instead of multiple apertures on a 
single camera have been used to increase the effective distance 
between apertures d, thereby increasing the depth-resolution 
[23–25]. Single camera applications have been limited to 
volume depths of O(10 µm)−O(1 cm) [26–34]. However, 
as described above, the desired application to diver-operated 
ocean measurements necessitates a single-camera system 
capable of volumes with a depth of O(10 cm).

With limited sensitivity, more precise measurement of 
the image pair distance (b) is essential for the out-of-plane 
position measurement. The sub-pixel centroid from the 2D 
Gaussian fit of the image pairs has commonly been used for 
the distance calculation [23, 35]. The diameter of the circum-
scribed circle around the 2D Gaussian fit or weighted cen-
troids of the projected pattern is another method to calculate 
the distance between images [26, 30, 32]. The Gaussian model 
inherently assumes that the objects to be tracked are spherical, 
as is typically the case for artificially seeded particles or bub-
bles [23–33]. Another sub-pixel centroid calculation method 
requires the image to have radial symmetry [36]. Neither of 
the approximations is appropriate for natural particulates and 

zooplankton in the ocean. Previous work has begun to address 
these concerns, such as a 1D cross-correlation method to 
determine the separation between image pairs of asymmetri-
cally shaped particles [34]. Additionally, as objects span more 
pixels (e.g. as they move away from the focal plane and blur), 
the error associated with the centroid determination becomes 
proportionally larger in pixel space, further increasing the 
uncertainty in the distance calculation per equation (1c) [35]. 
In contrast, the in-plane position measurements of DDPIV 
systems are an order of magnitude less uncertain [20, 35]. We 
aim to exploit this fact in the present algorithm development.

With a two-aperture DDPIV system, non-unique solutions 
for particle depth position exist for a volume of interest that 
includes the focal plane. A particle in front of the focal plane 
and a particle behind the focal plane can form the same image 
pair on the camera frame, leading to directional ambiguity 
[23]. To overcome this challenge, a three-aperture mask was 
developed such that the orientation of the projected triangle 
inverts as the particle crosses the focal plane. The additional 
aperture also aids in correctly matching images that corre-
spond to the same particle, by adding a further constraint that 
images must create an equilateral triangle [15]. While this 
approach increases matching specificity, each particle occu-
pies 50% more pixel space on each camera frame than a two-
aperture mask. The crowding of the frame leads to additional 
image matching ambiguities and overlapping images, limiting 
the particle number densities and volume depths that can be 
analyzed. The aforementioned issues can again be overcome 
by using a multiple camera system [23], or by color-coding 
the holes in the mask of a single camera system [27, 31]. 
However, the color-coded aperture solution is not suitable for 
an underwater imaging system due to the loss in light sen-
sitivity of a color sensor compared to a monochrome sensor 
[37, 38]. The higher light sensitivity is especially critical for 
daytime underwater measurements, as a bandpass filter is 
necessary to minimize the interference from sunlight but also 
reduces the desired incident light scattered from particulates. 
To remove directional ambiguities in the two-aperture system, 
only one side of the focal plane is illuminated. To be sure, 
the methods developed in this paper can be equally applied to 
three-aperture systems.

In this paper, we develop image processing techniques for 
single-camera DDPIV to address the constraints described 
above while also facilitating the tracking of non-spherical 
particles as are common in ambient ocean particulates. The 
higher resolution of the in-plane pixel position (x, y) of the 
projected images, compared to the reconstructed out of plane 
physical position (Z) of the particles, has been leveraged to 
extend the measurable volume size of a single camera system 
by orders of magnitude, to 10 cm  ×  10 cm  ×  24 cm depth. 
The projected images are individually tracked across the 2D 
field of view and then matched based on the 2D trajectories 
in time. The particle trajectory in physical space is based on 
the distance between the matched image trajectories over 
time. This strategy limits the impact of the uncertainty in the 
depth-location of the particles during particle trajectory iden-
tification. Tracking the images in time allows time-history 
information to inform the image matching process (section 2). 
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Finally, a 2D cross-correlation method is used to determine 
the shift between the projected images, b, for non-spherical, 
dynamically shape-changing objects (section 3). This allows 
the DDPIV diagnostic to be used at field sites with highly 
variable natural particulate and organisms.

The new measurement technique is implemented with 
two camera systems (section 4). Calibration (section 5) and 
experimental (section 6) methods are described, followed by 
presentation of the resulting volume size and depth-sensitivity 
regimes that were achieved (section 7.1). Analysis of the 
developed algorithm with synthetically generated data sets 
from Hill’s spherical vortex was used to determine image pair 
matching accuracy (section 7.2). The performance of the 2D 
cross-correlation method was validated with spherical parti-
cles (section 7.3). An empirical application of the methods to 
particles and swimming zooplankton is presented to demon-
strate the capabilities of the single camera DDPIV system in 
practice (section 7.4).

2.  DDPIV processing algorithm

2.1.  Summary

The limited sensitivity of the DDPIV diagnostic 
(
∂b
∂Z

)
 leads to 

large out-of-plane (Z) errors, relative to the in-plane measure-
ment (X, Y). In the current algorithm, the inherently higher 
resolution of the in-plane pixel positions (x, y) of the images 
has been leveraged. Figure  2 compares the current DDPIV 
processing algorithm to previous work. Here, the individual 
projected images are identified (section 2.2) and subsequently 
tracked across multiple frames (section 2.3). The image tra-
jectories are matched as corresponding to the same particle 
by using criteria related to the angle, distance, time-history, 

velocity and shape of the images (section 2.4). Finally the 3D 
pixel coordinates (x, y, b) of the matched image tracks are cal-
culated (section 2.5) and translated into physical 3D coordi-
nates (X, Y , Z) (section 2.6).

2.2.  Individual image identification

An intensity threshold is used to convert the collected gray-
scale frames into binary. The individual projected images 
can be filtered based on size if the particle size distribution is 
known a priori. Additionally, morphological closing (dilation 
and erosion) can be performed on the binary frames to remove 
noise [39]. The intensity-weighted centroids of the identified 
projected images are calculated using the pixel intensities 
of the original gray-scale frame associated with each image 
(equation (3)). Note that a more robust dynamic template 
matching algorithm is used for final determination of the par-
ticle depth position (section 3).

xc =

∑
i Iixi∑
i Ii

� (3a)

yc =

∑
i Iiyi∑
i Ii

.� (3b)

2.3. Temporal tracking of projected images

Projected image trajectories are created from the weighted 
centroids of the collected images by using a nearest neighbor 
method with a prescribed maximum allowable pixel displace-
ment between consecutive frames [40]. Many tracking algo-
rithms exist to perform this step depending on the specific 
object and flow field of interest [41, 42].

Figure 2.  Flowchart comparing the traditional processing algorithm for DDPIV to the algorithm presented in this paper (section 2). In the 
current work, the temporal tracking step (dashed outline) is conducted before the image trajectories are matched together and translated into 
3D particle tracks.

Meas. Sci. Technol. 29 (2018) 075401



V A Troutman and J O Dabiri﻿

5

2.4.  Matching image trajectories

2.4.1.  Angle and distance criteria.  The first two criteria used 
for determining if two image trajectories potentially corre-
spond to the same particle are based on the location of the 
weighted centroids (figure 3). The range of possible distances 
between image pairs ([bmin, bmax]) is a function of the optical 
specifications and the region of the volume that is illuminated 
([Zmin, Zmax]). Furthermore, the range of possible angles 
between the image pairs ([θmin, θmax]) is determined by the 
relative orientation of the apertures. The range of allowable 
angles is also dependent on the size and shape of the tracked 
objects, due to the variability in the weighted centroid calcul
ation of the projected images (section 2.2). For a two-aperture 

mask, we consider the angle regions on both sides of each 
projected image, as illustrated in figure 3.

2.4.2. Time-history and velocity criteria  In order for a can-
didate projected image trajectory pair to be considered a 
potential match, the angle and distance criteria must hold for 
all frames that contain both image trajectories. This allows 
the time-history of the projected images to inform matching  
(figure 4(a)).

True projected image pairs originating from the same 
particle move together such that any motion orthogonal to 
the image pair orientation (θ), must be in the same direc-
tion (figure 4(b)). By contrast, motion parallel to the image 
pair orientation occurs due to a combination of motion in the 

Figure 3.  The angle and distance criteria for projected image matching.

Figure 4.  (a) The angle and distance criteria applied over two time-steps t1 and t2. The matching ambiguity at t1 is resolved when using 
information at t2. (b) Velocity criterion requires image motion orthogonal to the image pair orientation (θ) to be in same direction.

Meas. Sci. Technol. 29 (2018) 075401
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(X, Y) plane and changes in the depth of the particle (Z), and is 
therefore potentially ambiguous as a matching criterion.

2.4.3.  Projected image shape  The shape of the projected 
images can also be taken into account to inform matching through 

normalized 2D cross-correlation of the images that meet all of 
the criteria in the preceding sections. For a given image trajec-
tory and frame, if a matching ambiguity persists, a template win-
dow is defined that surrounds the image of interest (see section 3). 
Multiple search windows are defined that surround the potential 

Figure 5.  (a) The solid black template window surrounds the current image of interest and three dashed black search windows (S1, S2, S3) 
surround the potential image matches. All three search regions represent candidate image matches that meet the angle and distance 
criteria (red region) as well as the time-history and orthogonal velocity criteria. The image pairs are given weights proportional to the 
corresponding 2D normalized cross-correlation peak value within the search window such that the weights sum to one. The gray-levels 
of the frame have been inverted for visualization. (b) The map of the 2D normalized cross-correlation values for the search windows. The 
peak value within each search window is used to assign proportional weights to the potential image matches for this image and time-step of 
interest.

Figure 6.  An example group of image trajectories to illustrate the iterative matching algorithm. Trajectory #1 has multiple potential image 
trajectory matches (i.e. #2 through #5) from the angle, distance, time-history, and velocity matching criteria. After trajectory #1 and 
trajectory #2 are set as the initial match, this places a constraint on all additional matches for the two trajectories: new image trajectory 
matches cannot overlap in time (eliminates trajectory #3) and must remain in the same angle region as the initial match (eliminates 
trajectory #4). The remaining potential image matches (i.e. trajectory #5) are iterated through this process again, until no additional 
matches are made. This allows for a long image trajectory (i.e. #1) to be matched with multiple shorter image trajectories (i.e. #2 and #5).

Meas. Sci. Technol. 29 (2018) 075401
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image matches (figure 5(a)). These potential image pairs are given 
weights proportional to the corresponding correlation peak value 
within the search windows (figure 5(b)) such that the weights sum 
to one. This is done for all time-steps for the image trajectory of 
interest, and subsequently for all image trajectories.

This 2D cross-correlation method is a particularly useful 
matching tool for non-spherical particles. Figure  5(a) high-
lights the limited impact that the shape criterion has on the 
weight for spherical particles. For a more conservative and 
computationally faster matching scheme, equal weights that 
sum to one can be given to each of the ambiguities at each 
time-step, forgoing the cross-correlation.

2.4.4.  Iterative matching.  The weights calculated over the 
frames for each potential image trajectory pair are summed 
together and used for an iterative matching scheme. For exam-
ple, image trajectory #1 (from the group of image trajectories 
depicted in figure 6) has multiple potential image trajectory 
matches (trajectories #2 through #5) from the angle, dis-
tance, time-history, and velocity matching criteria. The image 
trajectory pairing with the maximum summation (i.e. trajec-
tory #1 and trajectory #2) is set as the initial match. This 
limits the possible additional matches for the two trajectories. 
In the case of trajectory #1, new image trajectory matches 
cannot overlap in time, which eliminates trajectory #3 as a 
candidate. New image trajectory matches must also remain in 
the same angle region as the initial match, which eliminates 
trajectory #4 on the opposite side. The remaining potential 
image matches (i.e. trajectory #5) are iterated through this 
process again, until no additional matches are made. This 
allows for a long image trajectory (i.e. #1) to be matched with 
multiple shorter image trajectories (i.e. #2 and #5).

In the case that two trajectories have the exact same weight 
summation with the trajectory of interest, if they are in the same 
angle region, and if they do not overlap in time, then both are 
set as the initial match and the same iterative matching scheme 
continues. This scenario is significantly less common when the 
cross-correlation method is applied to determine the weights.

2.5.  Calculation of 3D pixel coordinates of matched image 
trajectories

Once the image trajectories in 2D pixel space (x1, y1, x2, y2) 
have been matched together, the in-plane pixel coordinates 
(x, y) are calculated using equations  (1a) and (1b). The dis-
tance between the two images (b), can be calculated using 
the weighted centroids of the images, the centroids from 2D 
Gaussian models, or the cross-correlation method described 
in section 3.

2.6. Transformation into 3D physical coordinates

A smoothing spline is applied to the 3D pixel coordinates of 
the trajectories before the interpolation functions from cali-
bration are used to transform the tracks into physical 3D space 
(X, Y , Z). Particles must lie within the convex hull of the cali-
bration points to be transformed [43]. From the trajectories, 
velocity vectors are calculated via finite difference in time.

3.  2D cross-correlation method for non-spherical 
objects

A 2D cross-correlation method is used to determine the dis-
tance between the two projected images (b) from a non-spher-
ical object, allowing the depth (Z) position to be determined 
more accurately than using the distance between the two cen-
troids of the images. This method is similar to PIV and other 
template (feature) matching cross-correlation techniques to 
determine shifts of pixel windows [44]. However in this work, 
the template dynamically changes for each time-step with the 
pixels in and surrounding the projected image of interest. The 
search region is defined to center around the identified image 
match for each frame (figure 7).

The pixels associated with the two matched images at a 
given time-step are determined by gray-scale thresholding 
(figure 7(a)). The first image (left-most image) is designated 
as the template window, the height and width (hT , wT) of 
which are calculated using equation  (4) with the bounds 
extended by βT  (figure 7(b)). The second image is designated 
as the search window, with the height and width (hS, wS) spec-
ified via equation (5). This region is expanded to be αS times 
larger than the template region (or at a minimum βS  larger), 
to ensure that the search region is larger than the template 
region in both dimensions. These window parameters are 
chosen based on the particle sizes, shapes, number density 
and imaging system. In this work, the following parameter 
values were used: βT = 2 pixels,αS = 1.5,βS = 8 pixels. 
The magnitude of the shift from the original template loca-
tion to the location within the search window with the peak 
normalized 2D cross-correlation value is defined here as b12 
(figure 7(c)). Three-point splines in both the x and y direc-
tions are used to interpolate an approximate sub-pixel peak 
location of the cross-correlation.

wT = max(w1, w2) + βT� (4a)

hT = max(h1, h2) + βT� (4b)

wS = max (αS · wT , wT + βS)� (5a)

hS = max (αS · hT , hT + βS) .� (5b)

This cross-correlation process is repeated utilizing the 
second image as the template window, and the first image 
as the search window, resulting in the calculation of b21 
(figure 8). These shift calculations involve different pixel 
regions, thereby facilitating an important comparison. If the 
two values are within a given threshold (ε), they are aver-
aged together, resulting in the final calculation of b for the 
image pair (equation (6)). Otherwise, the pair is rejected. 
The two shift values can significantly differ when either the 
two images are not a correct match, one of the identified 
images comprises two different overlapping images, or a 
different image is in close proximity and interferes with the 
template and search windows. This dual cross-correlation 
helps filter erroneous calculations of b, which propagate to 
erroneous Z−position calculations. In this work, a threshold 
of ε = 1 pixel was used.

Meas. Sci. Technol. 29 (2018) 075401



V A Troutman and J O Dabiri﻿

8

b =

{ b12+b21
2 , if |b12 − b21| � ε

undefined, otherwise.
� (6)

4.  System hardware

Two different cameras, an Emergent Vision Technologies 
HS-2000M (2048  ×  1088 pixels, 30 fps) and a Red Digital 
Cinema EPIC-W 8K (8192  ×  4320 pixels, 30 fps) were used 

to demonstrate different volume size and depth-sensitivity 
regimes that can be achieved with the developed DDPIV pro-
cessing algorithms (table 1). An LED array was used to illu-
minate the volume of interest with 2500 lumens. Though the 
Red Digital Cinema camera has a color sensor, a gray-scale 
conversion (Rec.ITU-R BT.601-7) was used for analysis as a 
proof-of-concept for a monochrome camera implementation.

A two-aperture mask for the DDPIV imaging system was laser 
cut from 3 mm black acrylic. The distance between the centers 

Figure 7.  (a) Individual image pixel regions are determined from gray-scale thresholding. The object used in this is example is a 5 mm 
zooplankton (A. salina). (b) Definition of template (T) and search (S) windows for the described 2D cross-correlation method (equations 
(4) and (5)). (c) The calculated image shift (b12) is the distance from the original template location to the location within the search window 
with the peak normalized cross-correlation value. The gray-levels of the frame have been inverted for visualization.

Figure 8.  (a) Template and search windows used for the calculation of b12. (b) Template and search windows used for the calculation of 
b21. These calculations are within the prescribed threshold (ε = 1 pixel), leading to the final calculation for the image shift for this frame 
(b = 63.4 pixels). The gray-levels of the frame have been inverted for visualization.
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of the apertures (d) and the diameters of the apertures (da) were 
selected depending on the lens and volume imaging requirements 
(figure 9(a), table  1). The resulting size and resolution of the 
imaged volumes are discussed in section 7.1. Standard filter hous-
ings that fasten to the front of the lenses were used for secure and 
consistent installation of the acrylic mask (figure 9(b), table 1).

5.  Camera system calibration

To obtain full-volume interpolation functions for the volume 
of interest, a printed grid (figure 10(a)) was traversed normal 
to the optical axis through the volume of interest using a 
manual-positioning slide (figure 10(b)). Each handle revo
lution resulted in a 2.54 +/− .02 mm travel distance of the 
grid in Z, for a total traversable distance of 27.94 cm. For each 
calibration grid point that was imaged onto the sensor, the 3D 
physical coordinates (X, Y , Z) and the 3D pixel coordinates 
(x, y, b) were compiled. These coordinates were used to inter-
polate measured 3D pixel coordinates for any position within 
the volume via Delaunay triangulation [45].

Figure 11(a) shows a sample calibration frame, with the iden-
tified images enhanced for visualization. Red markers denote 
the calculated (x, y) position of each measured calibration grid 

point from the projected image pairs. A magnified section of 
the original sample calibration frame is included for reference 
(figure 11(b)). The resulting compilation of all of the calibra-
tion points as the grid is traversed in the Z−direction is shown 
in figure 11(c). The variable geometric magnification over the 
volume is seen by the (x, y) pixel movement of the grid posi-
tions that are at a constant in-plane (X, Y) position.

The calibrated volume (figure 12) expands with the out-
of-plane (Z) dimension due to the changing geometric mag-
nification. The shaded gray region is the convex hull of the 
calibration points; only particles within the convex hull are 
reconstructed to ensure well posed interpolation [43].

6.  Measurement technique characterization

6.1.  Synthetic frame generation

Synthetically generated frames were created to validate the 
developed DDPIV image matching algorithm and to deter-
mine key operating parameters for the Red Digital Cinema 
camera system. Particles were advected in 3D physical 
space (X, Y , Z) using the velocity field prescribed by a 
rotated Hill’s spherical vortex (equation (7), figure 13):  

Table 1.  The two camera systems used in this work, along with the accompanying lens and DDPIV mask specifications.

Component Parameter Emergent Vision Technologies Red Digital Cinema

Camera Model HS-2000M EPIC-W 8K
Resolution (pixel) 2048 × 1088 8192 × 4320
Frame rate (fps) 30 30
Exposure (s) 0.02 0.03

Lens Model Nikon Nikorr, 50 mm Sigma Cine, 85 mm
Aperture 1.2 1.5

Acrylic mask (figure 9(a)) D (mm) 49 80
da (mm) 4 4
d (mm) 20 20

Housing assembly (figure 9(b)) Filter housing 52 mm 82 mm
Thread adapter N/A 86  −  82 mm

Mask orientation (equation (1d), figure 3) θ (°) 70 0

Figure 9.  (a) Dimensions of the laser-cut acrylic mask used in this work (table 1). (b) Assembly of the acrylic mask and filter housing to 
fasten the mask to the front of the camera lens (table 1).
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a = 5 cm, Uo = 0.5 cm s−1 [46]. Using the interpola-
tion functions from calibration (section 5), the 3D phys-
ical positions were translated into corresponding 3D 
pixel positions (x, y, b). The individual image positions 

(x1, y1, x2, y2) were calculated by solving the system of 
equations (1a)–(1d).

r =
√

X2 + Z2� (7a)

Figure 10.  (a) Grid pattern used for the calibration of the DDPIV system. (b) The calibration system assembly comprises a printed grid 
secured to a manual-positioning slide that translates the grid in the Z−direction.

Figure 11.  (a) The identified images, from gray-scale thresholding, are enhanced on a sample calibration frame for visualization. The 
calculated (x, y) position of each collected calibration grid point is denoted by a red marker. These markers indicate the region of the camera 
frame where both images are projected, corresponding to the field of view for the DDPIV system. (b) A magnified section of the original 
sample calibration frame. (c) The x  −  y projection of the calibrated volume in 3D pixel space. As the grid is traversed in the Z−direction, 
the distance between image pairs b (denoted by color) changes. The variable geometric magnification over the volume is seen by the (x, y) 
pixel movement of the grid positions that are at a constant in-plane (X, Y) position.
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The projected images were placed on the simulated camera 
frames at the calculated individual image position (xo, yo), 
with pixel intensities prescribed by a 2D Gaussian function 
(equation (8)). The defocused radius (rd) [35] was determined 
from the defocusing of the calibration points, d = 0.5 mm, 
a particle size found in marine environments [47]. The peak 
intensity was prescribed by a uniformly-distributed random 
variable (Io ∼ U(0.6, 0.8)). After all of the projected images 

were placed onto the synthetic frame, uniformly distributed 
random noise was added to each pixel (εn ∼ U(0, 0.2)).

I(x, y) = Io exp

(
− (x − xo)

2
+ (y − yo)

2

2r2
d

)
.� (8)

To analyze the performance of the processing algorithm with 
increasing number density of particles, 1500 particles were 
randomly initialized (uniform distribution) throughout the test 
volume (17 cm  ×  17 cm  ×  28 cm depth). The particles were 
advected through the test volume for 10 time-steps at 30 fps. 
Trajectories were added to the synthetic frames in increments 
of 100 particles 

(
1.2 × 104 m−3

)
, resulting in the sample 

frames depicted in figure 14. Only particles within the cali-
brated volume and the illumination depth (24 cm) were pro-
jected onto the synthetic frames. To understand how the length 
of time-history impacts the matching algorithm, particles were 

Figure 12.  The calibrated volume show the resulting expanding volume due to the changing geometric magnification. The shaded gray 
region is the convex hull of the calibration points; only particles within the convex hull are reconstructed to ensure well posed interpolation. 
Collected calibration points are colored based on depth location. (a) The X  −  Z projections of the calibrated volume. (b) The Y  −  Z 
projection of the calibrated volume. (c) A 3D view of the calibrated volume.

Figure 13.  Streamlines prescribed by a rotated Hill’s spherical vortex (equation (7): a = 5 cm, Uo = 0.5 cm s−1) [46]. (a) The streamlines 
in the Z  =  0 cm plane. (b) A three-dimensional view of the streamlines.
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also advected for 30 time-steps (30 fps) at the same particle 
number density 

(
1.2 × 105 m−3

)
.

For each particle number density and frame sequence length, 
three random normally-distributed initial particle locations were 
used, to characterize the sensitivity of the matching performance 
to the initial positions of particles. The same particle number 
densities, initial positions and trajectories were used to com-
pare the performance of the matching algorithm using a single 
frame and multiple frames of time-history. For the single-frame 

matching algorithm, projected images are matched together if 
no ambiguity exists using only the angle and distance criteria.

6.2.  Laboratory applications

Spherical particles and zooplankton were tracked within a 
1.2 m  ×  0.53 m  ×  0.53 m (H × W × L) acrylic tank using 
both the Emergent Vision Technologies and Red Digital 
Cinema imaging systems. The spherical particles (Potters 

Figure 14.  Sample of the synthetically generated frames. The gray-levels of the frame have been inverted for visualization. The region 
of the frame with projected images corresponds to the field of the view for the DDPIV system, determined through calibration. (a) 
Initial frame of the lowest particle number density tested 

(
1.2 × 104 m−3

)
. (b) Initial frame of the highest particle number density tested (

1.9 × 105 m−3
)
.

Table 2.  The resulting performance of the two DDPIV imaging systems used in this work as determined from calibration.

Component Parameter Emergent Vision Technologies Red Digital Cinema

Volume size X × Y  (cm  ×  cm) 13  ×  6 12  ×  10
Z (cm) 24 24

Out-of-plane (Z) ∂b
∂Z  

(
pixel mm−1

) 0.15 1.0

∂Z
∂b  (mm/pixel) 6.8 1.0

In-plane (X − Y) ∂X
∂x ≈ ∂Y

∂y  (mm/pixel) 0.07–0.08 0.02–0.03

Figure 15.  Evaluation of the matches found in the initial frame of synthetically generated sequences using the flow prescribed by Hill’s 
spherical vortex with a particle number density of 1.2 × 105 m−3. The impact of including time-history (solid symbols) of the image tracks 
is analyzed by increasing the number of synthetically generated frames in the analyzed sequence. The algorithm was implemented with 
(red) and without (blue) the shape criterion. The performance is also compared to utilizing a single frame (open symbols, green) to inform 
matching.
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Industries Inc AGSL150, d = 100 µm) were introduced 
at the water surface and stirred within the tank before 
tracking. Adult zooplankton (A. salina, 5 mm) were intro-
duced at the water surface and freely swam throughout the 
tank.

7.  Results

7.1.  Volume size and sensitivity of imaging system

From the calibration method described in section 5, the mea-
surement capabilities for each camera system were quantified 

Figure 16.  A specific example where the time-history informed matching images in the initial frame. The correct image pairs are noted 
with the same marker color. The gray-levels of the frames have been inverted for visualization. (a) An ambiguous matching scenario using 
distance and angle criteria for the initial frame (b) After five frames of image tracking, the corresponding pairs become clear via the angle 
and distance criteria. In this case, the orthogonal velocity constraint is able to inform matching utilizing only two frames of time-history.

Figure 17.  Evaluation of the matches found in a 10-frame sequence of synthetically generated frames with the flow prescribed by Hill’s 
spherical vortex. The impact of particle number density is analyzed by utilizing time-history (solid symbols) with both with (red) and 
without (blue) the shape criterion applied. The performance is also compared to utilizing a single frame (open symbols, green) to inform 
matching. (a) The average number of matches per frame over the ten frame sequence. (b) The percent of total possible matches over the 
10-frame sequence.
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(table 2). The Red Digital Cinema camera system yields a 
higher measurement sensitivity and larger volume than the 
Emergent Vision Technologies camera system, as expected 
given the larger imaging sensor. The in-plane sensitivity is an 
order of magnitude greater than the out-of-plane sensitivity, 
also as expected for both systems [20, 35].

7.2.  DDPIV image matching algorithm performance

To investigate the impact of including time-history infor-
mation on the accuracy and effectiveness in matching, 1- to 
30-frame sequences were processed using the developed algo-
rithm (figure 15). The accuracy of the matching algorithm is 
quantified by the percentage of correct and incorrect image 
matches in the initial frame for each analyzed sequence. 
The same synthetic frames were used to analyze the perfor-
mance of the developed algorithm with and without using the 
shape criterion (i.e. peak cross-correlation value) to inform 
matching. Each line of data represents a different random 
normally-distributed set of initial particle locations within the 
volume.

Using a single frame of information, approximately 35% 
of possible image pair matches are correctly determined in 
the initial frame. The performance of the multiple-frame algo-
rithm developed here increases the correct matches to over 
60% of the potential image pairs, at a particle number density 
of 1.2 × 105 m−3 

(
5 × 10−5 ppp

)
. The beneficial impact of 

including time-history is shown in the case where the shape 
criterion is not used. Without the shape criterion, ambiguous 
matches are given exactly equal weights, and therefore if they 
persist for the same number of frames, are assigned the same 
probability. This leads to unresolved matching ambiguities 
particularly for shorter duration trajectories, leaving image 

pairs unmatched. By applying the shape criterion, the peak 
cross-correlation value can resolve those ambiguities for 
shorter duration trajectories.

A specific example from the synthetically generated frames 
that highlights how tracking images across the frame informs 
image matching is shown in figure 16. The two image pairs 
are correctly matched, despite the ambiguity occurring in the 
initial frame. Within five frames, the size and angle criteria 
are sufficient, but the orthogonal velocity constraint is able to 
inform matching utilizing only two frames.

The accuracy and effectiveness of the developed algorithm 
is also dependent on the total number and size of images 
that are projected onto the camera frame. This is affected by 
the size of the objects of interest, their number density, and 
the depth of the illuminated volume. The impact of particle 
number density on the matching performance is shown in 
figure 17 for a uniform spherical particle size of d = 0.5 mm. 
Ten frames of image trajectory time-history is compared to 
single-frame. Additional errors would be associated with the 
single-frame approach when attempting to construct trajecto-
ries from the 3D position data [48].

As the particle number density increases, the perfor-
mance of the matching algorithm decreases, but at a less sig-
nificant rate than single-frame processing, when 10 frames 
of time-history are used to inform the image matching. At 
the highest particle density tested, utilizing 10 frames of 
time-history on average increased the percent of image pair 
matches from approximately 25% to 55%. The average 
correct matches per frame for the single-frame processing 
reaches a maximum and then declines, while the multi-
frame with shape criterion processing is able to continue to 
make additional matches with increasing particle number 
density. The more conservative matching scheme without 

Figure 18.  A specific example from the highest particle number density tested 
(
1.9 × 105 m−3

)
 wherein the time-history is not able to 

inform image matching. (a) The centroids of the projected images are denoted on the synthetically generated frame. The gray-levels of 
the frame have been inverted for visualization. (b) The resulting images determined from gray-scale thresholding with their corresponding 
weighted centroids. The overlapping images cause erroneous trajectories in pixel space that inhibit matching.
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the shape criterion has a lesser performance increase, but 
that is accompanied with less erroneous matches. The higher 
errors associated with matching via the shape criterion can 
be attributed to all projected images being Gaussian dis-
tributions in this case. For non-spherical and dynamically 
shape-changing objects, such as those in the ocean, this lim-
itation will be even less significant, as the cross-correlation 
will present fewer ambiguities.

Overlapping images and tracking errors are the main 
source of error with the developed matching algorithm. As 
matching is applied with respect to the full trajectories, errors 
can propagate in time and impact the matching of multiple 
frames. A specific example from the highest particle number 
density tested 

(
1.9 × 105 m−3

)
, wherein the time-history is 

not able to inform image matching, is shown in figure  18. 
Previously developed algorithms to handle overlapping 

images (Gaussian) can not be used to address the generalized 
case of non-spherical particles [31, 35].

7.3.  Cross-correlation method for non-spherical objects

Spherical particles tracked over 100 frames were analyzed to 
compare the developed cross-correlation method to the tra-
ditional 2D Gaussian method for calculating the distance, b, 
between matched image pairs. For the Red Digital Cinema 
camera system, the absolute difference between the two calcul
ations, averaged for 100 particles, were within 0.2 ± 0.2 
pixel. This corresponds to a difference of 0.2 ± 0.2 mm in the 
calculation of the out-of-plane (Z) position of the tracked par-
ticles. For the Emergent Vision Technologies camera system 
the difference averaged for 20 particles were within 0.3 +0.6

−0.3
 

pixel. This corresponds to a difference of 2.0 +4.0
−2.0

 mm.

Figure 19.  The Emergent Vision Technologies camera system 
(

∂Z
∂b = 6.8 mm

pixel

)
 was used to measure the movement of freely swimming 

zooplankton (A. salina). (a) Two established image distance (b) calculations compared to the current cross-correlation method (section 3).  
(b) The in-plane (x, y) movement of the zooplankton, with the projected images at the beginning and the end of the selected track. The gray-
levels of the frame have been inverted for visualization.
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However, for a freely swimming 5 mm zooplankton (adult 
A. salina), the two calculations differ by up to 3 pixels (figure 
19(a)). The zooplankton is translating and rotating over the 
duration of the tracking, causing the projected shape to change 
throughout the duration of the track (figure 19(b)). In contrast 
to the projected shape of the spherical particle that remains 
uniform as it rotates. An error of 3 pixels in the determina-
tion of the shift between images is significant, in this case an 
error of approximately 20 mm in the depth-position leading to 

prohibitively large errors for tracking and velocity calculation. 
Hence, the present dynamic template match approach is essen-
tial for measurements of non-spherical particles such as these.

7.4.  Laboratory application: Zooplankton, A. salina

The Red Digital Cinema camera system 
(

∂Z
∂b = 1.0 mm

pixel

)
 

was used to measure the 3D positions of freely swimming 

Figure 20.  The measured 3D positions of freely swimming zooplankton (A. salina) in the laboratory. (a) A select frame with paired image 
tracks highlighted. The gray-levels of the frame have been inverted for visualization. (b) The 3D trajectories of the zooplankton over time.

Figure 21.  The measured 3D positions of particulate in the laboratory. (a) A select frame with paired image tracks highlighted. The gray-
levels of the frame have been inverted for visualization. (b) The 3D trajectories of the particles over time.
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zooplankton (A. salina) and particulate in the laboratory. To 
track only the zooplankton (figure 20), an image processing 
filter is in place to disregard the small images created by the 
particulate present in the field of view. The inverse filter is in 
place to disregard the large images created by the zooplankton 
to track only the particles (figure 21). Due to their size, the 
zooplankton (O (1 mm)) occupy more pixel-space than the 
particles (O (0.1 mm)). Therefore, we can track an order of 
magnitude more particles than zooplankton. This application 
demonstrates the ability to study 3D animal-fluid interactions, 
predator prey interactions, swimming speeds or number den-
sities of animals in a field environment despite the highly non-
spherical shapes of the tracked objects.

8.  Conclusion

Image processing algorithms for a single-camera defocusing 
digital particle velocimetry (DDPIV) imaging system have 
been developed to perform three-dimensional particle tracking 
velocimetry (PTV) of natural particulate and zooplankton in 
the water column within a 10 cm  ×  10 cm  ×  24 cm volume. 
The simplicity of the equipment required for DDPIV systems 
lends many advantages for a self-contained diver-operated 
imaging system. To overcome challenges with a lower depth-
sensitivity of the single-camera DDPIV system, the higher 
sensitivity in the in-plane measurement of the particles was 
leveraged. Due to highly variable particle densities in the 
natural environment, the time-history of object trajectories is 
used to inform volume reconstruction. A 2D cross-correlation 
dynamic template matching method is used to determine the 
depth position of non-spherical objects, allowing natural par-
ticulate and animals to be tracked for field measurements. The 
matching accuracy and effectiveness of the developed algo-
rithms were analyzed using synthetically generated frames of 
Hill’s spherical vortex. Using 30 frames of time-history was 
found to increase image matching capabilities from 35% recon-
struction for the single-frame approach to over 60% recon-
struction at the particle number density tested. Improvements 
in image matching were observed across a range of particle 
number densities. A case study was presented of tracking par-
ticles and zooplankton (adult A. salina), illustrating the utility 
of the technique to reconstruct 3D movement of highly non-
spherical and dynamically shape-changing objects. These pro-
cessing algorithms could also be extended to three-aperture, 
color-coded aperture, and multi-camera DDPIV systems, to 
further increase accuracy in image pair matching for labora-
tory experiments.
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