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Abstract
This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing
flow structures in low Reynolds number biological locomotion. Previous studies of high
Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with
transport barriers within the flow, which are not shown by a more classical quantity such as
vorticity. In low Reynolds number locomotion (O(1)–O(100)), in which viscous diffusion
rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to
locomotion mechanics. The target of study is an articulated two-dimensional model for
jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of
the model is numerically simulated with a viscous vortex particle method, using kinematics
adapted from previous experimental measurements on a live medusan swimmer. The roles of
the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking
clusters of particles both backward and forward in time. It is shown that a series of ridges in
front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the
lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish,
where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a
persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also
analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to
highlight differences in these frames of reference.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fluid mechanical studies of animal swimming typically focus
on the Eulerian velocity and vorticity fields created by
the animals. In recent years, a new approach has been
developed that studies animal swimming from a Lagrangian
perspective [1–3]. The premise of this method is to consider
the fluid as a dynamical system of fluid particles rather than
a continuum. By following the trajectories of an ensemble
of fluid particles, calculated from velocity fields or directly
measured from experiments, Lagrangian coherent structures
(LCS) are observed to separate the fluid into regions with
distinct dynamics [4]. LCS act as transport barriers in the
flow. Therefore they can efficiently describe the entire fluid

transport geometry. Since the LCS are generally not shown
by classical quantities such as velocity or vorticity, their
evolution provides a unique tool to study mass and momentum
transport.

To date, the Lagrangian approach has only been applied
to animals swimming at relatively large Reynolds numbers
(O(1000)), e.g. adult moon jellyfish and bluegill sunfish [1–3].
Non-biological applications of the method have been pursued
at Reynolds number of the same order of magnitude or
higher [3, 5, 6]. The method itself is independent of
Reynolds number because the analysis is based solely on
flow kinematics, i.e. Lagrangian fluid particle trajectories.
Hence, application to low Reynolds number swimming has
the potential to add new insight to locomotion mechanics in
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Figure 1. Simplified jellyfish kinematic model: (left) projected outline and centerline of the jellyfish from experimental data [7], with marker
points (•) used for generating articulated model; (right) articulated system of linked rigid bodies and numbering system used for hinges.
H and D denote the height and diameter of the model, respectively.

Figure 2. Measured angles (circles) and sinusoidal hinge correlations for hinges 1–3.

this regime, especially given that existing Eulerian metrics
(e.g. vorticity) are largely obscured by diffusion.

In the present study, we apply the LCS method to a
jellyfish-like model swimming at low Reynolds number (O(1)–
O(100)). During early stages of their life cycle, jellyfish
ephyrae (larva) swim at low Reynolds number due to their
small size and low cruising speed. Only after they are fully
developed do jellyfish medusae (adults) swim at high Reynolds
number. Thus the present model, while an abstraction, is
useful for understanding the challenges faced by real animals
in viscous environments. The LCS analysis illustrates the
mechanism of advective transport and quantifies the limitations
of advective transport at low Reynolds numbers.

The paper is organized as follows. Section 2 describes
the target problem and the model. This is followed by a
presentation of the numerical simulation methodology and
the calculation of FTLE and LCS in section 3. Section 4
reports results obtained from the analysis. The FTLE of the
flow generated by the jellyfish is presented and a detailed
description of fluid particle advection is given to add physical
intuition to the FTLE results. The paper concludes with a brief
summary in section 5.

2. Target problem

The target of this study is a two-dimensional jellyfish-like
model, consisting of an articulated system of seven linked rigid
bodies, shown in figure 1. As this figure depicts schematically,
the rigid-body system approximates the centerline of the
projected outline of an oblate medusan jellyfish [2, 7]. The
motion of this centerline was reconstructed from a sequence of
snapshots of the outline, obtained from filming the rectilinear
swimming of this jellyfish over two contraction cycles. Five
marker points on one side of the centerline, as shown in the
left panel of figure 1, were tracked over this interval, and the
secants joining these points were used to divide the centerline
into discrete links. The angles between these secants are
plotted for the left side of the body in figure 2. Each of the
angle time sequences was fitted with a sinusoid, as shown in
this figure, and the resulting functions were used to prescribe
the angles of hinges between the rigid bodies. The constituent
bodies are each rigid ellipses with length equal to the mean
length of the corresponding secant and with density equal to
the surrounding fluid. The kinematics and system are both left–
right symmetric.
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Figure 3. Longitudinal position, Yc/H , of the centroid of the
self-propelling jellyfish.

It is important to emphasize that this simple model is
only meant to serve as an abstraction of jellyfish locomotion.
In particular, three-dimensional phenomena such as vortex
stretching, which likely influence the mechanics of a biological
swimmer, are clearly missing from this model. No attempt was
made to account for the thickness of the actual organism, as
is evident in figure 1. The gaps between bodies, which are
transparent to the flow, are included in order to simplify the
numerics. Though it is possible to wrap a ‘skin’ around the
system, it was decided that such a feature was unnecessary
within the scope of this study.

Figure 1 depicts three length scales. The coordinates
are scaled by L, which denotes the arc length from the
lip of the jellyfish orifice to the innermost hinge (hinge 3).
The shape changes also give rise to two other length scales:
H , the mean ‘height’ of the bell, and Dmax, the maximum
diameter of the bell. The ratios of these length scales are
H/L ≈ 0.67 and Dmax/L ≈ 2.1. The undulation period,
T , forms a natural timescale for the problem. The prescribed
hinge kinematics give rise to the largest speed at the orifice
lip, which, relative to the centroid of the frontmost body, is
|Ulip|max ≈ 1.5L/T .

There are two relevant Reynolds numbers in this problem,
one based on the kinematics and another based on the resulting
self-propulsion. The kinematic Reynolds number, Rek , defined
here based on |Ulip|max and H , is set throughout the simulations
at Rek = |Ulip|max H/ν = 16, where ν is the kinematic
viscosity. (It is also useful to note a slightly different definition,
based on maximum bell diameter and the undulation period:
Rek2 = D2

max/T ν. Its value is approximately 69 here, while
in the larger jellyfish medusae studied by Dabiri et al [7],
the value was approximately 4700. The present regime is
characteristic of a jellyfish larva, however.) The propulsion
Reynolds number, Rep = V c H/ν, based on the mean
longitudinal speed V c of the centroid of the jellyfish and
the mean height H , is determined during the course of the
simulation.

Figure 4. Longitudinal velocity, VcT/H , of the jellyfish centroid.
The mean velocity was found to be V cT/H ≈ 0.16.

3. Methodology

3.1. Numerical method

The numerical simulations were carried out with a viscous
vortex particle method, with strong coupling to the body
dynamics. This high-fidelity method solves the Navier–
Stokes equations by means of vorticity-bearing computational
particles; the particles move with the local velocity field,
and exchange strength to account for viscous diffusion. The
dynamical coupling with the body and the enforcement of
kinematic boundary conditions are handled simultaneously,
through the flux of new vorticity to nearby particles and the
update of body position and velocity via Newton’s second
law. The moving particles provide the method with a natural
adaptivity to the changing body configuration. Furthermore,
particles are only needed in regions in which vorticity is non-
zero. The reader is referred to previous work for details of the
methodology [8, 9].

3.2. Computation of the finite-time Lyapunov exponent
(FTLE) field

The theoretical foundation of the finite-time Lyapunov
exponent field has been discussed in detail in previous papers
(see, for example [4, 5]), and the interested reader is referred
to these for guidance. Here, we focus primarily on the
computation of the FTLE field, which differs in some respects
from previous studies. Indeed, by obtaining the velocity
field through the Biot–Savart induction of vorticity-bearing
particles, the vortex particle method provides somewhat more
direct access to the FTLE field than a grid-based method. In
particular, the velocity gradient tensor field is itself induced by
the particles, and this fact is used to avoid finite differencing
of the particle map and the associated noise this procedure
introduces.

Consider the particle trajectories given by solution of the
equation

dX

dt
= v[X(t; t0,x0), t], (1)
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Figure 5. Vorticity field: free swimming (left), fixed swimming (right). The contour levels of vorticity are identical.

X(t0; t0,x0) = x0. (2)

The flow map, φt
t0 , represents the solution of this equation for

fixed initial time, t0; it maps particles to their final position at
time t :

φt
t0 : x0 �→ φt

t0(x0) = X(t; t0,x0). (3)

Formally, this flow map is written as the time integral of the
velocity field,

φt
t0(x0) = X(t; t0,x0) = x0+

∫ t

t0

v[X(τ ; t0,x0), τ ] dτ. (4)

The Jacobian of this flow map is its derivative with respect to
changes in the initial particle location. This derivative can be
applied to the integral in (4) to obtain the expression

dφt
t0

dx
(x0) = I +

∫ t

t0

dφτ
t0

dx
(x0) · ∇v[X(τ ; t0,x0), τ ] dτ. (5)

Through this equation, the deformation experienced between
nearby points arises from the cumulative action of the velocity
gradient tensor. Note that the Jacobian between the initial and
final configuration of the flow depends on its complete history
during the interval.

The finite-time version of the (right) Cauchy–Green
deformation tensor, �, at a given point x is defined by

�(x) =
(

dφ
t+TLE
t

dx
(x)

)∗
dφ

t+TLE
t

dx
(x), (6)

where ()∗ denotes the transpose of the tensor. So defined,
the tensor quantifies the stretching of an infinitesimal material
line over the interval [t, t + TLE]. The maximum eigenvalue,
λmax, of this tensor represents the maximum stretching that
will occur near x over this interval, when the material line is
aligned with the corresponding eigenvector. This eigenvalue
constitutes the FTLE field, σ

TLE
t0 , defined as

σ TLE
t0 (x) = 1

|TLE| ln
√

λmax(�(x)). (7)

The forward-time FTLE field, when TLE > 0, is constructed
to reveal repelling Lagrangian coherent structures (LCS),
which are analogous to stable manifolds in a steady flow
(see, e.g., [4]). In contrast, setting TLE < 0 leads to the

Figure 6. For free-swimming locomotion: (top) forward-time FTLE
field, at t/T = 10, using TLE = 9T ; (bottom) backward-time FTLE
field at t/T = 19, with TLE = −9T . Red corresponds to largest
magnitude, while blue is smallest.

backward-time FTLE field, in which attracting LCS (analogous
to unstable manifolds) are uncovered.

The usual technique for computing (7) is based on velocity
data (obtained experimentally or from grid-based simulation)
that is only available at fixed grid points. In such cases,
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Figure 7. (Top) Forward-time FTLE field and initial block of tracer
particles (black circles) at t/T = 10; (bottom) backward-time FTLE
field and final configuration of tracer particles at t/T = 19.

the data must be interpolated at the locations of advecting
particles, and the spatial gradient of the resulting flow map
obtained by finite differencing at the grid points from which
the particles were launched. The approach taken here is
different, in that equations (4) and (5) are used in tandem
to compute the Jacobian along the trajectories of a set of
advecting particles.

The data from a vortex particle simulation consist
of the instantaneous locations and vortex strengths of the
computational particles. These data determine not only the
entire velocity field, but also its spatial gradient. Consider,
for example, a single vortex particle at the origin, with
its accompanying strength �. It carries a smooth vorticity
distribution with radius ε,

ω(x) = �

ε2
ζ(|x|/ε), (8)

where ζ is the regularization function (in this work, ζ(r) =
exp(−r 2)/π ). This particle ‘induces’ a planar velocity field

Figure 8. (Top) Forward-time FTLE field and initial configuration of
tracer particles (black circles) at t/T = 10; (bottom) backward-time
FTLE field and final configuration of tracer particles at t/T = 19.

given by

v(x) = �

2π |x|2
( −y

x

)
q(|x|/ε), (9)

where x = (x, y), and q represents the de-singularization
provided by the smooth particle:

q(r) = 2π

∫ r

0
r ′ζ(r ′) dr. (10)

In turn, the velocity gradient field corresponding to the vortex
particle is obtained by differentiating (9) [10]:

∇v(x) = −�
ζ(|x|/ε)
ε2|x|2

[
xy y2

−x2 −xy

]

+ �

2π

q(|x|/ε)
|x|4

[
2xy y2 − x2

y2 − x2 −2xy

]
. (11)

Thus, the velocity gradient at any point (inside or outside
the region of particle coverage) is provided by the collective
influence of all such smooth vortex particles. This enables a
more spatially extended computation of the FTLE field, when
desired.
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Figure 9. Snapshots from t/T = 10 to 14 in increments of 0.5T , from left to right then top to bottom, of the forward-time FTLE and
corresponding configuration of the backward-tracked block of particles in figure 8. The particles are depicted in red.

One is tempted to unify the entire vortex method/FTLE
procedure by identifying the FTLE particles with those
particles already used for the Navier–Stokes simulation.
However, these latter particles lose their identity every few time
steps, as they must be occasionally re-initialized to a new set to
preserve the accuracy of the method [8, 11]. Consequently, the
FTLE computation procedure is carried out in post-processing,
using a distinct set of particles that covers the region of interest.
These FTLE particles are initially situated on a uniform grid,
with spacing an integer multiple of the initial spacing of the
vortex particles (for the results presented here, a factor of two
is used).

4. Results

The jellyfish model was simulated in self-propulsion, starting
from rest in a stationary fluid. For all simulations reported
in this work, the particle spacing was 0.01L and the time-
step size was 8 × 10−4T . It was verified that these choices
led to sufficiently converged simulation results. The resulting
longitudinal position and velocity of the centroid of the
jellyfish over the first ten periods are shown in figures 3 and 4,
respectively. It was necessary to run the simulation for at least

six periods in order for the mean velocity to become stationary;
the resulting mean was found to be V cT/H ≈ 0.16. In other
words, the system requires 6.4 contractions in order to travel
one body height. Thus, the propulsion Reynolds number, as
defined in section 2, is approximately 1.1.

In studies of biological mechanisms of locomotion, it is
common to adopt a frame of reference in which the creature is
tethered in a constant and uniform free stream. The speed of
this free stream is adjusted so that the mean longitudinal force
exerted on the creature vanishes. However, such a reference
frame omits the possibly important variations in speed of a
freely-swimming creature, as clearly exhibited in figure 4. In
order to identify differences between these reference frames, a
tethered model was also simulated. The prescribed kinematics
were identical to those from the self-propelling case. However,
the head of the tethered model was held fixed in space, and the
system was subjected to a free stream with velocity equal and
opposite to the mean forward velocity of the self-propelling
case (for which the mean longitudinal force vanishes).

4.1. Vorticity field

The instantaneous vorticity fields generated by both the free-
swimming and fixed jellyfish at the same point in their cycles
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are depicted in figure 5. Both cases exhibit features that are
consistent with previous studies of live jellyfish swimming [7].
At the instant shown, the bell is beginning its contraction
phase, and the seed of a starting vortex is apparent at each lip
of the orifice. Meanwhile, a fully-developed pair of stopping
vortices persist in the wake of the bell. Due to the much
lower Reynolds number, these vortices diffuse much more
rapidly than in the previous experimental studies, preventing an
extensive vortical wake from developing behind the jellyfish.

The side-by-side comparison between the free-swimming
and tethered models illustrates only small differences in the
vorticity field. In particular, the strength of the stopping and
starting vortices are slightly stronger in the fixed swimmer.
However, it is difficult to distinguish differences between these
two flows by simply by comparing vorticity. The FTLE field
will be used in section 4.4 to highlight these differences more
clearly.

4.2. Forward- and backward-time FTLE fields

Data from the numerical simulation for the free-swimming
case was used to compute the FTLE field with the method
described in section 3.2. All of the FTLE analysis was
performed with particles uniformly spaced 0.02L units apart,
and with forward Euler time-marching with a step size of
0.019T . Figure 6 depicts the forward- and backward-time
FTLE fields at times t/T = 10 and 19, respectively. The
particle trajectories and their Jacobians are integrated over
intervals of duration TLE = 9T and −9T , respectively. These
integration times were chosen purposefully to reveal as much
structure in the flow as possible. Note that the backward-time
field is shown at the end of the integration interval for the
forward-time field, and vice versa.

The forward-time FTLE field at t/T = 10 consists of a
sequence of nine curved ridges on the left and right sides in the
front of the jellyfish. A weaker ridge sits between each pair
of these nine dominant ones, and the entire series is rooted
at the outside of the orifice lip. The ridges nearer to the
axis of symmetry are narrower and more elongated; the final
ridges are, in fact, nearly indistinguishable. A similar sequence
of ridges is found inside the subumbrellar cavity, though its
structure is less clearly resolved. The last of these interior
ridges appears to enclose the entire sequence. Finally, a single
weak ridge extends downward from either lip and—together
with the body itself—envelops the cavity.

The backward-time FTLE field at t/T = 19 is also
characterized by a sequence of nine ridges, which each extend
orthogonally and downward (and a companion sequence
extends, less clearly, upward) from a strong corrugated ridge
attached to each lip of the orifice. As in the forward-time
FTLE field, the ridges in the sequence that are nearer the axis of
symmetry are narrower and more elongated. The most central
ridge nearly envelops the region just above the corrugated
dividing ridge.

Though the ridges identified in both of these fields are
distinct, the role that they play in fluid transport is not clear.
In the next section, they are interpreted by means of particle
tracking.

Figure 10. (Top) Initial locations of tagged particles overlaid on the
forward-time FTLE field t/T = 10; (bottom) final configuration of
tagged particles overlaid on backward-time FTLE field at t/T = 19.

4.3. Particle evolution

Tracer particles were introduced in small clusters in order to
provide a physical interpretation of the FTLE ridges. In the first
case, a square block of particles was released just outside of the
orifice lip, as shown in figure 7. The block initially overlaps
several ridges in the sequence in the forward-time FTLE field
at the same instant of the release of particles (t/T = 10). After
nine periods, the particles appear to align with the elongated
ridges shown in the backward-time FTLE field computed at
the same instant.

Another particle block was placed below the jellyfish bell
at t/T = 19 and tracked backward in time to t/T = 10,
as shown in figure 8. The final placement of the block of
particles was chosen so that it overlapped the strong corrugated
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Figure 11. Forward-time FTLE field for: self-propelled swimmer (left) and tethered system (right). The same contour levels are used for both
plots.

Figure 12. Backward-time FTLE field for: self-propelled swimmer (left) and tethered system (right). The same contour levels are used for
both plots.

ridge below the bell in the backward-time FTLE field. After
backward-time tracking, these particles appear to align with
both the interior and exterior sequences of ridges shown in the
forward-time FTLE field at t/T = 10.

The evolution of these particles and of the corresponding
forward-time FTLE field is shown in figure 9 from t/T = 10
to 14 in half-period increments. Making use of the periodicity
of the flow, each FTLE field between t/T = 11 and 14 was
generated by translating the fields at t/T = 10 and 10.5
upward by the corresponding distance of travel of the fish.
In half of one cycle, the structure of the FTLE field does
not change, though the ridges deform in response to the bell
contraction, and each ridge in the series of nine is pulled closer
to the lip. Particles are trapped between neighboring ridges. As
the bell expands to complete the cycle, the interior and exterior
ridges nearest the lip coalesce with the U-shaped structure that
spans the region below the bell; the particles aligned with these
ridges slide down this structure. Meanwhile each remaining
ridge has taken the place of the one it preceded. The process
repeats in each contraction cycle, until all threads of particles
have been pulled down the U-shaped structure into the wake of
the jellyfish.

To further elucidate this process, the particles in their early
(deformed) configuration were manually tagged according to
the finger-like zone that they inhabit, as shown in the upper
plot in figure 10. Particles marked with an X were unable
to be placed into a specific set with confidence. The final

configuration of the distinctly tagged particles is shown in
the lower plot of figure 10. Each set of particles also
forms a distinct group in its final position, and the borders
between these groups appear to coincide with the ridges in the
backward-time FTLE field. The sequence of particle threads
is also preserved in the final groupings: particles in the thread
extending downward from the lip at t/T = 10 (the yellow
diamonds) eventually comprise the innermost group at the
final time; each successive thread pulled from the lip region,
either external or internal to the bell, forms the next group in
an outward succession from this innermost group. A white
line is manually drawn to clarify the border between particles
originating from inside and outside the cavity; the X -tagged
particles primarily arrive on this line. This border corresponds
well with the corrugated central ridge. In other words, this
ridge separates the fluid that is deflected into the wake from
that which is pushed upward into the subumbrellar cavity.

In fact, the particles that have slid down the U-shaped
structure depicted in the forward-time FTLE field are trapped
between successive backward-time FTLE ridges. These
ridges move progressively closer toward the axis of symmetry,
pushing the particles with them as they move. The particles
in each zone are simultaneously pulled away from the central
corrugated ridge, as shown in the bottom panel of figure 7.
In short, the series of forward-time FTLE ridges internal and
external to the jellyfish, together with the U-shaped structure
below it, represent an extended repelling LCS. The ridges
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in the backward-time FTLE field, which are rooted at the
corrugated central ridge, form a series of attracting LCS. These
LCS complement each other to transport particles from the
front of the bell into the wake, or alternatively, recirculate
particles already inside the bell. The sense of this latter
recirculation—upward near the central axis and downward
near the subumbrellar surface of the bell—is consistent with
experimental observations of live jellyfish by Dabiri et al [7].

4.4. FTLE fields of self-propelling versus tethered swimmers

The FTLE fields generated by the tethered system were
examined and compared with those produced by the self-
propelling swimmer. The forward- and backward-time FTLE
fields of these cases are shown side by side in figures 11 and 12,
respectively. Though the ridge patterns are qualitatively the
same, there are obvious differences in the strengths of the
ridges and slight differences in their placement. In particular,
the series of forward-time FTLE ridges in front of the jellyfish
are notably longer for the tethered case, suggesting that fluid
is drawn into the wake from a larger region in this case.
The larger value of the FTLE field along all ridges—both in
forward- and backward-time—shows that repulsion from and
attraction to the corresponding LCS are significantly faster in
the tethered case.

5. Conclusions

This work has explored the use of the FTLE field for revealing
Lagrangian coherent structures in low (but finite) Reynolds
number biological locomotion. A new approach has been
introduced for computing this FTLE field, using the data
from a vortex particle simulation to induce both the particle
velocities as well as the Jacobian of the flow map. The
focus on the relatively simple mechanics of a self-propelling
oblate jellyfish-like swimmer has allowed the flow structure
to be analyzed in detail. The ridges of both the forward-and
backward-time FTLE fields have been elucidated by tracking
judiciously-placed groups of particles. It was shown that the
ridges act as transport barriers that feed slender fingers of fluid
once per cycle from the front of the jellyfish into its wake. This
fluid is pulled into filaments in the wake that are revealed by
the ridges of the backward-time FTLE field. Meanwhile, fluid
originating inside the bell cavity apparently remains trapped in
recirculation inside.

The system was also analyzed in a configuration in which
the jellyfish was tethered in a steady free stream, and the
FTLE field was used to highlight differences in these frames

of reference. Though the flow structures are qualitatively
similar, the rate of stretching in the tethered case was
significantly larger along all ridges. This may have important
consequences for experimental and computational studies that
utilize this tethered configuration to draw conclusions about
self-propelling swimmers.
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